簡易檢索 / 詳目顯示

研究生: 許華珊
Hsu, Hua-Shan
論文名稱: 銅銀雙金屬奈米觸媒上的二氧化碳還原反應
CO2 Reduction Reaction on Copper-Silver Bimetallic Nanocatalysts
指導教授: 王禎翰
Wang, Jeng-Han
口試委員: 王禎翰
Wang, Jeng-Han
洪偉修
Hung, Wei-Hsiu
王冠文
Wang, Kuan-Wen
口試日期: 2022/06/28
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 93
中文關鍵詞: 電化學二氧化碳還原反應銅銀奈米觸媒油胺油酸法核殼結構
英文關鍵詞: CO2 reduction reaction (CO2RR), Cu-Ag nanocatalysts, Oleylamine-Oleic acid reduction, Core-shell structure
研究方法: 實驗設計法主題分析比較研究
DOI URL: http://doi.org/10.6345/NTNU202200730
論文種類: 學術論文
相關次數: 點閱:150下載:33
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由電化學二氧化碳還原反應(CO2RR),可以轉化廢氣二氧化碳作為高經
    濟價值的燃料如一氧化碳,此反應已被長遠的研究並且確實可以有效地解決溫
    室效應與能源短缺的問題。在這次的研究,我們合成銅核-銀殼的奈米觸媒並運
    用於二氧化碳還原反應。還原劑、反應溫度與銅銀比例皆是在製程中可以提升
    CO2RR 效能的關鍵變因。適當的反應溶劑需要添加三正辛基膦(TOP)以及油酸
    (OA),並在483 K 下進行。通過比例的調整,Cu2Ag1 具有最佳的產物選擇性,
    電位-1.3 V 下的CO 法拉第效率為70.0%,其電流密度為-3.98 mA/cm2。根據能
    量散射光譜儀(EDX)、X 光繞射分析儀(XRD)和X 光光電子光譜儀(XPS)結果,
    Cu2Ag1 具有明確的核殼結構,殼層還有豐富的銀金屬態,這些被視為是影響產
    物選擇性之原因。

    CO2 reduction (CO2RR), which converts contaminated CO2 into potential fuel of CO, has been widely studied to better solve the problems of green-house effect and energy shortage. In our present work, CuAg bimetallic nanocatalysts have been synthesized and utilized in CO2RR application. The key synthetic parameters of reduction reagents, temperatures and Cu/Ag ratios have been thoroughly optimized to better enhance the efficiency of CO2RR. The results showed that the reagent of mixed trioctylphosphine (TOP) and oleic acid (OA), the temperature of 483 K and the ratio of Cu2Ag1 demonstrate the best CO Faradaic efficiency of 70.0% under -1.3 V (V vs. RHE), which current density of -3.98 mA/cm2. According to the characterizations from Energy Dispersive X-Ray Analysis (EDX), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), the optimized catalyst shows the appropriate core-shell structure with abundant metallic state Ag in the shell, which are responsible for the excellent CO2RR performance.

    摘要 i Abstract ii 致謝 iii 目次 v 表次 viii 圖次 ix 第一章 緒論 1 1-1 前言 1 1-2 電催化二氧化碳還原反應介紹 2 1-3 金屬觸媒分類 3 1-4 雙金屬觸媒與構型介紹 6 1-5 文獻回顧:銅銀觸媒應用於CO2RR 8 1-6 研究動機 10 第二章 實驗方法 11 2-1 實驗藥品、氣體以及儀器 12 2-1-1 實驗藥品 12 2-1-2 實驗氣體 14 2-1-3 實驗儀器、器材 15 2-2 奈米粒子觸媒製備方法 17 2-2-1 製備Cu/C奈米粒子觸媒 18 2-2-2 製備Ag/C奈米粒子觸媒 20 2-2-3 以不同還原劑製備Cu3Ag1/C-Reductant奈米粒子觸媒 22 2-2-4 製備Cu3Ag1/C-T (T =493、483、453 K)奈米粒子觸媒 23 2-2-5 製備CuxAgy/C奈米粒子觸媒 25 2-3 觸媒鑑定 27 2-3-1 能量散射光譜儀 (Energy Dispersive X-Ray Spectroscopy, EDX) 27 2-3-2 X光繞射儀 (X-ray Diffraction, XRD) 29 2-3-3 X光光電子光譜儀 (X-ray photoelectron spectroscopy, XPS) 31 2-4 觸媒電化學分析 33 2-4-1 工作電極製備方法 33 2-4-2 線性掃描伏安法(Linear sweep voltammetry, LSV) 35 2-4-3 循環伏安法( Cyclic voltammetry, CV) 37 2-4-4 二氧化碳還原反應(CO2 Reduction Reaction, CO2RR) 40 2-5 反應產物分析 41 2-5-1 氣相產物分析 41 2-5-2 質量活性(Mass activity, MA) 44 第三章 實驗結果探討 45 3-1 還原劑改變造成的結構差異對於效能的影響與鑑定分析 46 3-1-1 能量散射光譜儀(EDX) 46 3-1-2 X光繞射儀 (X-ray Diffraction, XRD) 49 3-1-3 線性掃描伏安法(Linear sweep voltammetry, LSV) 52 3-1-4 循環伏安法(Cyclic voltammetry, CV) 54 3-1-5 二氧化碳還原反應(CO2 Reduction Reaction, CO2RR) 56 3-1-6 還原劑組成造成之結構差異對於效能影響之總結 60 3-2 反應溫度對於Cu3Ag1/C-T的效能影響與鑑定分析 61 3-2-1 能量散射光譜儀(EDX) 61 3-2-2 X光繞射儀 (X-ray Diffraction, XRD) 63 3-2-3 X光光電子光譜儀(XPS) 65 3-2-4 線性掃描伏安法(Linear sweep voltammetry, LSV) 67 3-2-5 循環伏安法(Cyclic voltammetry, CV) 68 3-2-6 二氧化碳還原反應(CO2 Reduction Reaction, CO2RR) 69 3-2-7 反應溫度對於效能影響之總結 73 3-3 前驅物比例對於CuxAgy/C的效能影響與鑑定分析 74 3-3-1 能量散射光譜儀(EDX) 74 3-3-2 X光繞射儀 (X-ray Diffraction, XRD) 76 3-3-3 線性掃描伏安法(Linear sweep voltammetry, LSV) 79 3-3-4 循環伏安法(Cyclic voltammetry, CV) 80 3-3-5 二氧化碳還原反應(CO2 Reduction Reaction, CO2RR) 82 3-3-6 前驅物比例對於效能影響之總結 86 3-4 觸媒結構分析 87 第四章 實驗結果總結 89 第五章 結語與未來展望 90 參考資料 91

    [1] J.-H. Zhou and Y.-W. Zhang, "Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective," Reaction Chemistry & Engineering, vol. 3, no. 5, pp. 591-625, 2018, doi: 10.1039/c8re00111a.
    [2] Q. Lei et al., "Investigating the Origin of Enhanced C2+ Selectivity in Oxide-/Hydroxide-Derived Copper Electrodes during CO2 Electroreduction," J Am Chem Soc, vol. 142, no. 9, pp. 4213-4222, Mar 4 2020, doi: 10.1021/jacs.9b11790.
    [3] "Metal Nanoparticles Used as Catalysts." http://what-when-how.com/nanoscience-and-nanotechnology/metal-nanoparticles-used-as-catalysts-part-2-nanotechnology/
    [4] S. Das et al., "Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2," Chem Soc Rev, vol. 49, no. 10, pp. 2937-3004, May 21 2020, doi: 10.1039/c9cs00713j.
    [5] Q. Shao, P. Wang, S. Liu, and X. Huang, "Advanced engineering of core/shell nanostructures for electrochemical carbon dioxide reduction," Journal of Materials Chemistry A, vol. 7, no. 36, pp. 20478-20493, 2019, doi: 10.1039/c9ta07016h.
    [6] J. Zhao, S. Xue, J. Barber, Y. Zhou, J. Meng, and X. Ke, "An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction," Journal of Materials Chemistry A, vol. 8, no. 9, pp. 4700-4734, 2020, doi: 10.1039/c9ta11778d.
    [7] J. T. Feaster et al., "Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes," ACS Catalysis, vol. 7, no. 7, pp. 4822-4827, 2017, doi: 10.1021/acscatal.7b00687.
    92
    [8] J. Choi et al., "Electrochemical CO 2 reduction to CO on dendritic Ag–Cu electrocatalysts prepared by electrodeposition," Chemical Engineering Journal, vol. 299, pp. 37-44, 2016, doi: 10.1016/j.cej.2016.04.037.
    [9] J. Huang, M. Mensi, E. Oveisi, V. Mantella, and R. Buonsanti, "Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO2 Reduction Revealed by Ag-Cu Nanodimers," J Am Chem Soc, vol. 141, no. 6, pp. 2490-2499, Feb 13 2019, doi: 10.1021/jacs.8b12381.
    [10] Z. Chang, S. Huo, W. Zhang, J. Fang, and H. Wang, "The Tunable and Highly Selective Reduction Products on Ag@Cu Bimetallic Catalysts Toward CO2 Electrochemical Reduction Reaction," The Journal of Physical Chemistry C, vol. 121, no. 21, pp. 11368-11379, 2017, doi: 10.1021/acs.jpcc.7b01586.
    [11] A. Heuer-Jungemann et al., "The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles," Chem Rev, vol. 119, no. 8, pp. 4819-4880, Apr 24 2019, doi: 10.1021/acs.chemrev.8b00733.
    [12] S. Mourdikoudis and L. M. Liz-Marzán, "Oleylamine in Nanoparticle Synthesis," Chemistry of Materials, vol. 25, no. 9, pp. 1465-1476, 2013, doi: 10.1021/cm4000476.
    [13] E. R. Corson et al., "In Situ ATR-SEIRAS of Carbon Dioxide Reduction at a Plasmonic Silver Cathode," J Am Chem Soc, Jun 18 2020, doi: 10.1021/jacs.0c01953.
    [14] A. Zahid, A. Shah, and I. Shah, "Oxide Derived Copper for Electrochemical Reduction of CO2 to C2+ Products," Nanomaterials (Basel), vol. 12, no. 8, Apr 18 2022, doi: 10.3390/nano12081380.
    [15] K. Sun et al., "Ultrahigh Mass Activity for Carbon Dioxide Reduction Enabled by Gold-Iron Core-Shell Nanoparticles," J Am Chem Soc, vol. 139, no. 44, pp. 15608-15611, Nov 8 2017, doi: 10.1021/jacs.7b09251.
    93
    [16] N. G. Mbewana-Ntshanka, M. J. Moloto, and P. K. Mubiayi, "Role of the amine and phosphine groups in oleylamine and trioctylphosphine in the synthesis of copper chalcogenide nanoparticles," Heliyon, vol. 6, no. 11, p. e05130, Nov 2020, doi: 10.1016/j.heliyon.2020.e05130.
    [17] M. T. Nguyen et al., "Synergistic Effect of the Oleic Acid and Oleylamine Mixed-Liquid Matrix on Particle Size and Stability of Sputtered Metal Nanoparticles," ACS Sustainable Chemistry & Engineering, vol. 8, no. 49, pp. 18167-18176, 2020, doi: 10.1021/acssuschemeng.0c06549.
    [18] S. Mourdikoudis et al., "Oleic acid/oleylamine ligand pair: a versatile combination in the synthesis of colloidal nanoparticles," Nanoscale Horiz, Jun 30 2022, doi: 10.1039/d2nh00111j.
    [19] N. M. Zain, A. G. Stapley, and G. Shama, "Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications," Carbohydr Polym, vol. 112, pp. 195-202, Nov 4 2014, doi: 10.1016/j.carbpol.2014.05.081.
    [20] R. M. Freire et al., "Natural arrangement of AgCu bimetallic nanostructures through oleylamine reduction," Inorganic Chemistry Frontiers, vol. 7, no. 24, pp. 4902-4912, 2020, doi: 10.1039/d0qi00940g.
    [21] Y. Wang and H. Yang, "Oleic acid as the capping agent in the synthesis of noble metal nanoparticles in imidazolium-based ionic liquids," Chem Commun (Camb), no. 24, pp. 2545-7, Jun 28 2006, doi: 10.1039/b604269d.
    [22] Q. Li et al., "Tuning Sn-Cu Catalysis for Electrochemical Reduction of CO2 on Partially Reduced Oxides SnOx-CuOx-Modified Cu Electrodes," Catalysts, vol. 9, no. 5, 2019, doi: 10.3390/catal9050476.

    下載圖示
    QR CODE