簡易檢索 / 詳目顯示

研究生: 彭士峰
Shih-Feng Peng
論文名稱: 以理論計算方式研究以下反應機構: I.水煤氣轉換反應在M/TiO2(110) (M=Pt, Au, Cu)表面之反應路徑探討 II.硫化氫在金屬表面W(111)的分解與氧化
Theoretical Studies of the Following Reaction Mechanisms: I.The Water-Gas Shift Reaction on M/TiO2(110) (M= Pt, Au, Cu) Surfaces II. The H2S Dissociation and Sulfur Oxidation on W(111) Surface
指導教授: 何嘉仁
Ho, Jia-Jen
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 142
中文關鍵詞: DFT計算WGSRTiO2(110)metal clusterW(111)H2S
英文關鍵詞: DFT calculaton, WGSR, TiO2(110), metal cluster, W(111), H2S
論文種類: 學術論文
相關次數: 點閱:271下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們使用週期性密度泛函理論來研究燃料電池系統中可能的催化反應,包括水煤氣轉換反應和硫化氫的分解與硫原子的氧化反應。在水煤氣轉換反應中,我們研究了在pure-TiO2(110)和M/TiO2(110)(M = Pt, Au, Cu8)表面上可能的反應途徑,其中以Cu8/TiO2(110)表面的反應活性最好,我們另外也計算了在Pt/TiO2(110)表面上的分子動態模擬反應。在Cu8/TiO2(110)表面上,我們計算了carboxyl和redox兩種反應機制的反應位能曲面,結果顯示在Cu8/TiO2(110)表面較容易進行redox反應路徑。而CO氧化反應的能障,從26 kcal/mol (pure-TiO2(110)) 降低到5.38 kcal/mol (經Cu cluster協助);另外,H2O的分解反應也從12.08 kcal/mol (pure TiO2(110)) 降低到 8.35 kcal/mol (經O-vacancy協助)。然而在Pt/TiO2(110)的表面上,因Pt和CO分子的吸附能太大(約44 kcal/mol),導致過度穩定中間態存在,發生毒化現象,不利於水煤氣轉換反應的進行。我們也計算了H2S在W(111)表面的分解反應,斷去其中兩個H-S鍵各需要跨越能障5.06 kcal/mol和15.68 kcal/mol,最終形成表面S原子和氣態H2分子,整個反應放熱51.80 kcal/mol。該S原子可繼續通入氧氣去除,形成SO和SO2的反應能障分別為14.44 kcal/mol和34.46 kcal/mol,最終形成氣態SO2分子放熱12.52 kcal/mol。

    The mechanism of the water-gas shift reaction, involving the adsorption of CO followed by desorption of CO2 and dehydrogenation of H2O, on pure-TiO2(110) and M/TiO2(110)(M= Pt, Au, Cu8) surfaces was investigated with periodic density functional theory. The result of MD (molecular-dynamic simulation) of H2O decomposition on Pt/TiO2 surface (with O-vacancy) at 300 K was also presented. The Cu/TiO2- (110) surface displays an extremely high catalytic activity toward water- gas shift reaction, in which Cu was considered to be the most active metal on TiO2(110) supported surface. We reported the possible potential energy surfaces for the carboxyl and redox mechanisms of WGSR on the interface between the Cu cluster and TiO2 support. Our results show that the redox mechanism would be the dominant path, in which the resided Cu cluster greatly reduces the barrier of CO oxidation process (5.38, and 26 kcal/mol, with and without Cu cluster, respectively). When the adsorbed CO was catalytically oxidized by the bridging oxygen of Cu/TiO2(110) surface to form CO2, the release of CO2 from the surface would result in the formation of an O-vacancy on the surface to facilitate the followed water splitting reaction (barrier 8.35 vs. 12.08 kcal/mol, with and without the aid of surface vacancy). Density functional theory calculations were also employed to investigate the dissociative adsorption of molecular H2S on a W(111) surface. The energy minimum of the adsorbed H2S was identified to bind preferentially at the top site. The adsorption sites of other S moieties (SH and S) were also examined, and they were found predominately at the bridge sites between first and second layers and the bridge sites between second and third layers, respectively. The binding of H2S and its S-containing species is stronger on the W(111) surface than on other metal surfaces, such as Pd, Ni, Cu, Au, Ag, and Ir. The elementary reactions of successive abstraction of H from H2S on the surface were examined. We also extend our study to the oxidation reaction of the adsorbed S by adding gaseous oxygen to the surface, which will react with S and eventually form SO2 and then desorb from the surface. Our results show that the above H2S dissociation and sulfur oxidation reactions do not bear high energy barriers and the overall reactions are exothermic on the W(111) surface.

    謝誌 i 中文摘要 ii Abstract iii 目錄 iv 第一章 緒論 1 第二章 計算方法簡介 4 §2-1 固態材料的電子結構理論 4 §2-1-1 密度泛函理論 4 §2-1-2 廣義梯度近似法 8 §2-1-3 空間週期性 10 §2-1-4 虛位勢 13 §2-2 擾動彈簧模型 16 §2-3 態密度分析法 18 第三章 水煤氣轉換反應在TiO2(110)表面與M/TiO2(110) (M= Pt, Au, Cu)表面之反應路徑探討 19 §3-1 簡介 19 §3-2 計算參數 30 §3-3 H2O在TiO2(110)與M/TiO2(110)(M= Pt, Au)表面分解反應 35 §3-3-1 Pt, Au金屬原子吸附於TiO2(110)表面之吸附位置和吸附能計算 35 §3-3-2 H2O分子及反應中間物(H和OH)的吸附結構與吸附能計算 37 §3-3-3 H2O分子在TiO2(110)-(1×2)與M/TiO2(110)-(1×2)(M= Pt, Au)的分解反應路徑探討 41 §3-3-4 Bader charge、態密度與空間效應 44 §3-3-5 結論 47 §3-4 水煤氣轉化反應在 M/TiO2(110)(M = Pt, Au) 表面的反應路徑探討 48 §3-4-1 水煤氣轉換反應在TiO2(110)表面上可能的反應機制 50 §3-4-2 水煤氣轉換反應在Pt/TiO2(110)表面上的反應機制 53 §3-4-3 水煤氣轉換反應在Au/TiO2(110)表面上可能的反應機制 56 §3-4-4 Bader charge 電荷分析與態密度分析 59 §3-4-5 分子動態模擬 64 §3-4-6 結論 67 §3-5 水煤氣轉化反應在Cu/TiO2(110)表面的反應機制探討 68 §3-5-1 Cu/TiO2(110)-(2×4)表面的建立 70 §3-5-2 水煤氣轉換反應在Cu8/TiO2(110)-(2×4)表面的反應機制探討 79 §3-5-3 Carboxyl和Redox反應機制的反應速率比計算 93 §3-5-4 態密度及電荷分析 95 §3-5-5 結論 101 §3-6 本章結論 102 §3-7 參考資料 104 第四章 硫化氫在W(111)表面的分解與氧化反應路徑探討 111 §4-1 簡介 111 §4-2 計算方法 112 §4-3 結果與討論 113 §4-3-1 H2S分解反應和S氧化反應中各反應中間物吸附結構和吸附能探討 115 §4-3-2 H2S 和SO2分子吸附於W(111)之吸附結構和吸附能探討 121 §4-3-3 H2S於W(111)表面分解反應路徑探討 124 §4-3-4 硫原子於W(111)表面上氧化反應路徑探討 127 §4-3-5 態密度分析 132 §4-3-6 反應中間物振動頻率分析 134 §4-4 本章結論 136 §4-5 參考資料 137 第五章 總結及未來展望 141

    Ch.3
    1. Milewski, J.; Miller, A.; Sałacinski, J. Int. J. Hydrogen Energy 2007, 32, 687.
    2. Grove, W. R. Philosophical Magazine and Journal of Science 1838, 13, 430.
    3. Biographical Memoirs of Fellows of the Royal Society, vol. 39 (Feb. 1994), pp. 3-18.
    4. Steele, B. C.; Helnzel, A. Nature, 2001, 414, 345.
    5. (a) Garcia, E.; Laborde, M. Int J. Hydrogen Energy 1991, 16, 307.; (b) Vasudeva, K.; Mitra, N.; Umasankar, P.; Dhingra, S. Int J. Hydrogen Energy 1996, 21, 13.; (c) Fishtik, I.; Alexander, A.; Datta, R.; Geana, D. Int J. Hydrogen Energy 2000, 25, 31.; (d) Navarro, R. M.; Pena, M. A.; Fierro, J. L. G. Chem. Rev. 2007, 107, 3952.
    6. (a) Marino, F.; Boveri, M.; Baronetti, G.; Laborde, M. Int. J. Hydrogen Energy 2004, 29, 67.; (b) Deluga, G. A.; Salge, J. R.; Schmidt, L. D.; Verykios, X. E. Science 2004, 303, 993.; (c) Fernando, S.; Hanna, M. Energy Fuels 2004, 18, 1695.
    7. Ralph, T. R.; Hogarth, M. P. Platinum Met. Rev. 2002, 46, 117
    8. (a) Thomas, J. M.; Thomas, W. J. Principles and Practice of Heterogeneous Catalysis; VCH: New York, 1997.; (b) Burch, R. Phys. Chem. Chem. Phys. 2006, 8, 5483.
    9. (a) Rodriguez, J. A.; Evans, J.; Graciani, J.; Park, J.-B.; Liu, P.; Hrbek, J.; Sanz, J. F. J. Phys. Chem. C 2009, 113, 7364.; (b) Rodriguez, J. A.; Liu, P.; Wang, X.; Wen, W.; Hanson, J.; Hrbek, J.;
    Perez, M.; Evans, J. Catal. Today 2009, 143, 45.
    10. Over, H.; Kim, Y. D.; Seitsonen, A. P.; Wendt, S.; Lundgren, E.;
    Schmid, M.; Varga, P.; Morgante, A.; Ertl, G. Science 2000, 287, 1474
    11. (a) Whittingham, M. S.; Savinell, R. F.; Zawodzinski, T. Chem. Rev.2004, 104, 4243.; (b) Holladay, J. D.; Wang, Y.; Jones, E. Chem. Rev. 2004, 104, 4767.; (c) Logan, B. E. Environ. Sci. Technol. 2004, 38, 160A.
    12. (a) Morgenstern, K.; Nieminen, J. Phys. Rev. Lett 2002, 88, 066102.; (b) Morgenstern, K.; Rieder, K. H. J. Chem. Phys. 2002, 116 ,5746.; (c) Mitsui, T.; Rose, M. K.; Fomin, E.; Ogletree, D. F.; Salmeron, M. Science 2002, 297, 1850.; (d) Pirug, G.; Ritke, C.; Bonzel, H. P. Surf. Sci.1991, 241, 289.; (e) Morgenstern, K.; Michely, T.; Comsa, G. Phys. Rev. Lett 1996, 77, 703.
    13. (a) Ruuska, H.; Pakkanen, T. A.; Rowley, R. L. J. Phys. Chem. B 2004, 108, 2614.; (b) Ren, J.; Meng, S. J. Am. Chem. Soc. 2006, 128, 9282. (c) Meng, S.; Wang, E. G.; Gao, S. Phys. Rev. B 2004, 69, 195404.
    14. Phatak, A. A.; Delgass, W. N.; Ribeiro, F. H.; Schneider, W. F. J. Phys. Chem. C 2009, 113, 7269.
    15. (a) Sato, Y.; Terada, K.; Hasegawa, S.; Miyao, T.; Naito, S. Appl. Catal. A 2005, 296, 80.; (b) Panagiotopoulou, P. ; Christodoulakis, A.; Kondarides, D. I.; Boghosian, S. J. Catal. 2006, 240, 114.; (c) Iida, H.; Igarashi, A. Appl. Catal. A 2006, 298, 152.; (d) Jacobs, G.; Graham, U. M.; Chenu, E.; Patterson, P. M.; Dozier, A.; Davis, B. H. J. Catal. 2005, 229, 499.; (e) Goguet, A.; Shekhtman, S. O.; Burch, R.; Hardcare, C.; Meunier, F. C.; Yablonsky, G. S. J. Catal. 2006, 237, 102.; (f) Chenu, E.; Jacobs, G.; Crawford, A. C.; Keogh, R. A.; Patterson, P. M.; Sparks, D. E.; Davis, B. H. Appl. Catal. B 2005, 59, 45.; (g) Xue, E.; O’Keeffe, M.; Ross, J. R. H. Surf. Sci. Catal. 2000, 130, 3813.
    16. Chrétien, S.; Metiu, H. Catal. Lett. 2006, 107, 143.
    17. Wendt, S.; Schaub, R.; Matthiesen, J.; Vestergaard, E. K.; Wahlström, E.; Rasmussen, M. D.; Thostrup, P.; Molina, L. M.; Lagsgaard, E.; Stensgaard, I.; Hammer, B.; Besenbacher, F. Surf. Sci. 2005, 598, 226.
    18. Azzam, K. G.; Babich, I. V.; Seshan, K.; Lefferts, L. J. Catal. 2007, 251, 153.
    19. Mars, P.; van Krevelen, D. W. Chem. Eng. Sci. 1954, 3, 41.
    20. (a) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.; (b) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.; (c) Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15.; (d) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169.
    21. (a) Perdew, J. P.; Yang, Y. Phys. Rev. B 1992, 45, 13244.; (b) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Penderson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671.
    22. White, J. A.; Bird, D. M. Phys. Rev. B 1994, 50, 4954.
    23. Monkhorst, H.; Pack, J. Phys. Rev. B 1976, 13, 5188.
    24. Wang, J. H.; Lin, M. C. J. Phys. Chem. B 2006, 110, 2263.
    25. (a) Ulitsky, A.; Elber, R. J. Chem. Phys. 1990, 92, 1510.; (b) Mills, G.; Jónsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305.; (c) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901.
    26. Wyckoff, R. W. G. Crystal Structure, Wiley, 1965, p. 251.
    27. (a) Wendt, S.; Schaub, R.; Matthiesen, J.; Vestergaard, E. K.; Wahlström, E.; Rasmussen, M. D.; Thostrup, P.; Molina, L. M.; Lagsgaard, E.; Stensgaard, I.; Hammer, B.; Besenbacher, F. Surf. Sci. 2005, 598, 226.; (b) Lindan, P. J. D.; Harrison, N. M.; Gillan, M. J. Phys. Rev. Lett. 1998, 80, 762.; (c) Schaub, R.; Thostrup, P.; Lopez, N.; Lægsgaard, E.; Stensgaard, I.; Nørskov, J. K.; Besenbacher, F. Phys. Rev. Lett. 2001, 87, 266104.
    28. (a) Kern, C. W.; Karplw, M. Water: A Comprehensie Treatise; Plenum: New York, 1972.; (b) Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular Structure. IV; Constants of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979.; (c)Villars, P.; Calvert, L. D. Pearson’s Handbook of Crystallographic Data for Intermetallic Phase, 2nd ed.; ASM International: Materials Park, OH, 1991.; (d) Shimanouchi, T. Tables of Molecular Vibrational Frequencies, Consolidated Volume 1, NSRDS NBS-39.; (e) Herzberg, G. Electronic spectra and electronic structure of polyatomic molecules; Van Nostrand: New York, 1966.
    29. Graciani, J.; Álvarez, L. J.; Rodriguez, J. A.; Sanz, J. F. J. Phys. Chem. C 2008, 112, 2624.
    30. Iddir, H.; Öğüt, S.; Browning, N. D.; Disko, M. M. Chem. Rev. B 2005, 72, 081407.
    31. (a) Bader, R. F. W.; Beddall, P. M. J. Chem. Phys. 1972, 56, 3320.; (b) Bader, R. F. W. Atoms in Molecules – A Quantum Theory, Oxford University Press, Oxford UK, 1990.
    32. Choi, Y.; Lin, M. C.; Liu, M. Angew. Chem. Int. Ed. 2007, 46, 7214.
    33. Guvelioglu, G. H.; Ma, P.; He, X.; Forrey, R. C.; Cheng, H. Phys. Rev. B 2006, 73, 155436.
    34. Peng, S.-F.; Ho, J.-J. Int. J. Hydrog. Energy 2010, 35, 1530.
    35. Gokhale, A. A. ; Mavrikakis, M., J. Am. Chem. Soc., 2008, 130, 1402.
    36. Blyholder, G. J. Phys. Chem. 1964, 68, 2772.
    37. Chen, H.-L.; Peng, W.-T.; Ho, J.-J.; Hsieh, H.-M. Chem. Phys. 2008, 348, 161.
    38. Ma, Z.-Y.; Huo, C.-F.; Liao, X.-Y.; Li, Y.-W.; Wang, J.; Jaio, H. J. Phys. Chem. C 2007, 111, 4305.
    39. Graciani, J.; Nambu, A.; Evans, J.; Rodriguez, J. A.; Sanz, J. F. J. Am. Chem. Soc., 2008, 130, 12056.
    40. Tang, Q.-L.; Liu, Z.-P. J. Phys. Chem. C 2010, 114, 8423.

    Ch.4
    (1) Speight, J. G. The Chemistry and Technology of Petroleum, 2nd ed.; Dekker: New York, 1991.
    (2) Stern, A. C.; Boubel, R. W.; Turner, D. B.; Fox, D. L. Fundamentals of Air Pollution, 2nd ed.; Academic: Orlando, FL, 1984.
    (3) Galea, N. M.; Lo J. M. H.; Ziegler, T. J. Catal. 2009, 263, 380.
    (4) Alfonso, D. R. Surf. Sci. 2008, 602, 2758.
    (5) Alfonso, D. R.; Cugini, A. V.; Sorescu, D. C. Catal. Today 2005, 99, 315.
    (6) McAllister, B.; Hu, P. J. Chem. Phys. 2005, 122, 084709.
    (7) Abufager, P. N.; Lustemberg, P. G.; Crespos, C.; Busnengo H. F. Langmuir 2008, 24, 14022.
    (8) Hyman, M. P.; Loveless, B. T.; Medlin, J. W. Surf. Sci. 2007, 601, 5382.
    (9) Chen, H-T; Choi, Y.; Liu, M.; Lin, M. C. J. Phys. Chem. C 2007, 111, 11117.
    (10) Galea, N. M.; Kadantsev, E. S.; Ziegler T. J. Phys. Chem. C 2009, 113, 193.
    (11) Spencer, M. J. S.; Todorova, N.; Yarovsky, I. Surf. Sci. 2008, 602, 1547.
    (12) Jiang, D. E.; Carter, E. A. Surf. Sci. 2005, 583, 60.
    (13) Jiang, D. E.; Carter, E. A. J. Phys. Chem. B 2004, 108, 19140.
    (14) Harrison, M. J.; Woodruff, D. P.; Robinson, J. Surf. Sci. 2006, 600, 1827.
    (15) Sakai, Y.; Koyanagi, M.; Mogi, K.; Miyoshi, E. Surf. Sci. 2002, 513, 272.
    (16) Lanzani, G.; Laasonen, K. Surf. Sci. 2008, 602, 321.
    (17) Galea, N. M.; Lo, J. M. H.; Ziegler, T. J. Catal. 2009, 263, 380.
    (18) Lin, X.; Schneider, W. F.; Trout, B. L. J. Phys. Chem. B. 2004, 108, 250.
    (19) Lin, X.; Hass, K. C.; Schneider, W. F.; Trout, B. L. J. Phys. Chem. B. 2002, 106, 12575
    (20) Rashkeev, S. N.; Ginosar, D. M.; Petkovic, L. M.; Farrell, H. H. Catal. Today 2009, 139, 291.
    (21) Casarin, M.; Ferrigato, F.; Maccato, C.; Vittadini, A. J. Phys. Chem. B. 2005, 109, 12596.
    (22) Rodriguez, J. A.; Liu, G..; Jirsak, T.; Hrbek, J.; Chang, Z.; Dvorak, J.; Maiti, A. J. Am. Chem. Soc. 2002, 124, 5242.
    (23) Prades, J. D.; Cirera, A.; Morante, J. R. Sens. Actuator B-Chem. 2009, 142, 179.
    (24) Silva, L. B.; Fagan, S. B.; Mota, R.; Fazzio, A. J. Phys. Chem. C. 2008, 112, 6677.
    (25) Chen, H.-T.; Chen, H.-L.; Ju, S.-P.; Musaev, D. G.; Lin, M. C. J. Phys. Chem. C. 2009, 113, 5300.
    (26) Chen, H.-L.; Ju, S.-P.; Chen, H.-T.; Musaev, D. G.; Lin, M. C. J. Phys. Chem. C. 2008, 112, 12342.
    (27) Chen, H.-T.; Musaev, D. G.; Lin, M. C. J. Phys. Chem. C. 2008, 112, 3341.
    (28) Chen, H.-T.; Musaev, D. G.; Lin, M. C. J. Phys. Chem. C. 2007, 111, 17333.
    (29) Chen, L.; Sholl, D. S.; Johnson, J. K. J. Phys. Chem. B. 2006, 110, 1344.
    (30) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
    (31) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.
    (32) Kresse, G.; Hafner, J. J. Phys. Condens. Matter 1994, 6, 8245.
    (33) Kresse, G.; Furthmuller, J. Comp. Mater. Sci. 1996, 6, 15.
    (34) Kresse, G.; Hafner, J. Phys. Rev. B 1996, 54, 11169.
    (35) Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.
    (36) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
    (37) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
    (38) Zhang, Y.; Yang, W. Phys. Rev. Lett. 1998, 80, 890.
    (39) Villars, P.; Calvert, L. D. Pearson’s Handbook of Crystallographic Data for Intermetallic Phase, 2nd ed.; ASM International: Materials Park, OH, 1991.
    (40) Chen, H.-T.; Choi, Y. M.; Liu, M. L.; Lin, M. C. J. Phys. Chem. C 2007, 111, 11117.
    (41) Polo, S. R.; Wilson, M. K. J. Chem. Phys. 1954, 22, 900.
    (42) Hopkins, A. G.; Brown, C. W. J. Chem. Phys. 1975, 62, 2511.
    (43) Nien, C.-H.; Madey, T. E. Surface Science 1999, 433, 254.
    (44) Meubus, P. J. Electrochem. Soc. 1978, 125, 1636.

    下載圖示
    QR CODE