簡易檢索 / 詳目顯示

研究生: 陳毅
Chen, Yi
論文名稱: 握持球棒位置對打擊運動學之影響
The effect of baseball bat grip positions on hitting kinematics
指導教授: 相子元
Shiang, Tzyy-Yuang
口試委員: 劉強
Liu, Chiang
陳韋翰
Chen, Wei-Han
相子元
Shiang, Tzyy-Yuang
口試日期: 2023/12/08
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 44
中文關鍵詞: 球棒打擊分期擊球角度關節角度角速度
英文關鍵詞: baseball bat, phases of batting, launch angle, joint angle, angular velocity
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301820
論文種類: 學術論文
相關次數: 點閱:128下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 緒論:當前的棒球打者會採用不同握棒位置來執行特定打擊策略。然而目前仍缺乏研究調查這些握棒方式對於全身性的運動學、擊球速度、擊球角度以及擊球負荷之影響。方法:18 位臺灣大專棒球聯賽公開一級組球員參與本研究。所有受試者皆為右打,並以標準握棒、握短棒與握長棒進行5公尺拋打實驗。每個握棒方式各打擊 10 次,共收集 540 筆有效數據。使用 Vicon三維動作分析系統搭配Visual 3D,捕捉與分析人體運動學數據、使用Rapsodo Hitting 2.0 用於判斷擊球速度與擊球角度。結果:在腳觸地階段,手臂外展角度隨著握棒長度而顯著減少 (短棒>標準>長棒),而骨盆角度則是隨著握棒長度而減少 (短棒<標準<長棒);擊球瞬間時,握短棒的後手手肘屈曲角度是最小的,而標準握棒又顯著小於握長棒。握短棒的骨盆旋轉角速度峰值顯著小於標準握棒和握長棒,但握短棒的右手肘伸展角速度峰值以及棒頭線性速度在擊球瞬間顯著大於其他兩種握棒方式。握短棒擊球速度顯著小於標準握棒和握長棒。擊球角度方面,握長棒的擊球角度顯著大於其他兩種握棒方式。計算站立、重心轉移和腳觸地發生的時間點,站立和重心轉移沒有發現顯著差異,但握短棒的腳觸地時間點顯著早於標準握棒和握長棒。結論:握短棒可提高後手肘伸展速度上,產生較高的棒頭速度,但因為球棒的有效質量 (effective mass) 的影響,擊球速度方面最慢,而握長棒需要相對較高的骨盆旋轉速度帶動,並且有較高的擊球角度,較容易形成高飛球。

    Introduction: Current baseball batters employ various grip positions to execute specific hitting strategies. However, there is a lack of research investigating the effects of these grip methods on overall biomechanics, bat speed, launch angle, and hitting load. Methods: This study involved 18 players from Taiwan’s collegiate baseball league, all right-handed hitters. They participated in a 5-meter hitting experiment using three different grip methods: “All fingers on the bat shaft” (AO), “Chock-up on the bat” (CU), and “One finger off the bat shaft” (OF). Each grip method involved 10 hits, resulting in 540 valid data points. We utilized the Vicon 3D motion analysis system in conjunction with Visual 3D to capture and analyze kinematic data. Rapsodo Hitting 2.0 was used to determine exit ball speed and launch angle. Results: During the foot contact timing, the arm abduction angle significantly decreased with grip length (CU>AO>OF), while the pelvic angle decreased with grip length (CU<AO<OF). CU had the smallest trailing elbow flexion angle at the ball contact timing, with AO also significantly smaller than OF. CU exhibited significantly lower peak pelvic rotational angular velocity than AO and OF, but CU had significantly higher peak right elbow extension angular velocity and linear bat head velocity at ball contact. CU had significantly lower exit ball speed compared to AO and OF. Concerning launch angle, OF had a significantly greater launch angle than the other two grip methods. The timing of stance, load, and foot contact was calculated, with no significant differences in stance and load timing, but CU's foot contact occurred significantly earlier than AO and OF. Conclusion: Choking up on the bat (CU) enhances the angular velocity of the trailing elbow, resulting in higher bat head velocity, but due to the influence of “effective mass,” it exhibits the slowest hitting speed. On the other hand, One finger off the bat shaft (OF) requires a relatively higher pelvic rotation speed to drive and has a higher launch angle, making it more likely to produce fly balls.

    目錄 摘要 I 第壹章 緒論 1 第一節 研究背景 1 第二節 研究問題 2 第三節 研究目的 2 第四節 研究假設 2 第五節 名詞操作與定義 3 第六節 研究之重要性 3 第貳章 文獻探討 3 第一節 握棒方式對打者運動表現之差異 3 第二節 擊球速度與擊球角度對於運動表現之差異 6 第參章 研究方法 8 第一節 實驗參與者 8 第二節 實驗設備 8 第三節 握棒方式 14 第四節 實驗步驟 17 第五節 資料處理 20 第六節 統計分析 21 第肆章 結果 22 第一節 站立與重心轉移時間點之運動學差異 22 第二節 腳觸地、擊球瞬間與餘勢時間點之運動學差異 24 第三節 角速度、揮棒速度、擊球速度與擊球角度之差異 27 第四節 各分期時間點距離擊球瞬間之時間差異 28 第伍章 討論 29 第一節 站立與重心轉移之討論 29 第二節 腳觸地與擊球瞬間之討論 30 第三節 角速度、揮棒速度、擊球速度與擊球角度之討論 32 第四節 上軀幹旋轉之討論 32 第五節 握長棒之運動學數據討論 33 第六節 增進打擊能力之討論 34 第七節 研究限制與建議 35 第陸章 結論 35 參考文獻 37 附錄一 實驗受試者須知 42 附錄二 研究受試者同意書 43 附錄三 實驗受試者基本資料表 44 圖錄 圖 1、球棒黏貼紅外線反光球位置 9 圖 2、Plug-in gait反光球黏貼位置 11 圖 3、Stalker Pro 測速槍 14 圖 4、標準握法 15 圖 5、握短棒方式 16 圖 6、握長棒方式 17 圖 7、實驗流程圖 18 圖 8、實驗環境 19 圖 9、打擊動作分期示意圖 21   表錄 表 1、關節角度定義與方向 20 表 2、站立時之上身關節角度 22 表 3、站立時之下身關節角度 22 表 4、重心轉移時之上身關節角度 23 表 5、重心轉移時之下身關節角度 23 表 6、腳觸地時之上身關節角度 24 表 7、腳觸地時之下身關節角度 25 表 8、擊球瞬間之上身關節角度 25 表 9、擊球瞬間之下身關節角度 25 表 10、餘勢時間點之上身關節角度 26 表 11、餘勢時間點之下身關節角度 26 表 12、角速度峰值 (°/s) 27 表 13、球棒線性速度峰值、球速與擊球角度 28 表 14、各分期距離擊球瞬間之時間點 (m/s) 28

    參考文獻
    劉宗翰、劉強 & 相子元 (2006)。由運動科學觀點探討如何選擇棒球木棒。運動教練科學,7,211-216。
    陳毅、陳韋翰、陳鋒、劉強、詹明昇 & 相子元 (2023)。以穿戴式裝置比較不同層級棒球打者軀幹及手部之揮棒技術。體育學報,56(2),179-190。
    龔榮堂 (2006)。球棒重量與揮棒速度及握力相關之研究。體育學報,39(1),55-64。
    Adair, R. K. (1990). The physics of baseball. Harper & Row New York.
    Adair, R. K., & Chew, G. F. (1990). The physics of baseball. American Institute of Physics.
    Ae, K., Koike, S., & Kawamura, T. (2020). Kinetic function of the lower limbs during baseball tee-batting motion at different hitting-point heights. Sports biomechanics, 19(4), 452-466.
    Camp, C. L., Loushin, S., Nezlek, S., Fiegen, A. P., Christoffer, D., & Kaufman, K. (2021). Are wearable sensors valid and reliable for studying the baseball pitching motion? An independent comparison with marker-based motion capture. The American Journal of Sports Medicine, 49(11), 3094-3101.
    Chen, W.-H., Chiu, Y.-C., Liu, C., Chan, M.-S., Fiolo, N. J., & Shiang, T.-Y. (2022). A biomechanical comparison of different baseball batting training methods. International Journal of Sports Science & Coaching, 17(3), 599-608.
    Delmonico, R. (1996). Offensive baseball drills. Human Kinetics.
    DeRenne, C. (2007). The scientific approach to hitting: Research explores the most difficult skill in sport. University Readers San Diego (CA).
    DeRenne, C., & Blitzbau, A. (1990). Why your hitters should choke up. Scholastic Coach, Jan, 59(6), 106-107.
    DeRenne, C., Morgan, C. F., Escamilla, R. F., & Fleisig, G. S. (2010). A choke-up grip facilitates faster swing and stride times without compromising bat velocity and bat control. The Sport Journal, 13(2).
    DeRenne, C., Stellar, T., & Blitzbau, A. (1993). High-tech hitting: Science vs. tradition. West Publishing Company.
    Dowling, B., & Fleisig, G. S. (2016). Kinematic comparison of baseball batting off of a tee among various competition levels. Sports biomechanics, 15(3), 255-269.
    Escamilla, R. F., Fleisig, G. S., DeRenne, C., Taylor, M. K., Moorman, C. T., Imamura, R., Barakatt, E., & Andrews, J. R. (2009a). A comparison of age level on baseball hitting kinematics. Journal of applied biomechanics, 25(3), 210-218.
    Escamilla, R. F., Fleisig, G. S., DeRenne, C., Taylor, M. K., Moorman, C. T., Imamura, R., Barakatt, E., & Andrews, J. R. (2009b). Effects of bat grip on baseball hitting kinematics. Journal of applied biomechanics, 25(3), 203-209.
    Fleisig, G., Zheng, N., Stodden, D., & Andrews, J. (2002). Relationship between bat mass properties and bat velocity. Sports Engineering, 5(1), 1-8.
    [Record #39 is using a reference type undefined in this output style.]
    Fleisig, G. S., Hsu, W. K., Fortenbaugh, D., Cordover, A., & Press, J. M. (2013). Trunk axial rotation in baseball pitching and batting. Sports biomechanics, 12(4), 324-333.
    Flynn, L. S., Richard, G. J., Vincent, H. K., Bruner, M., Chen, C., Matthias, R. C., Zaremski, J. L., & Farmer, K. W. (2021). Swing Type and Batting Grip Affect Peak Pressures on the Hook of Hamate in Collegiate Baseball Players. Orthopaedic Journal of Sports Medicine, 9(12), 23259671211060807.
    Glazier, P. S. (2010). Is the ‘crunch factor’an important consideration in the aetiology of lumbar spine pathology in cricket fast bowlers? Sports Medicine, 40, 809-815.
    Gray, R. (2018). Comparing cueing and constraints interventions for increasing launch angle in baseball batting. Sport, Exercise, and Performance Psychology, 7(3), 318.
    Horiuchi, G., & Sakurai, S. (2016). Kinetic analyses on increase of bat head speed in baseball batting. International Journal of Sport and Health Science, 14, 94-101.
    Hsu, W. K., McCarthy, K. J., Savage, J. W., Roberts, D. W., Roc, G. C., Micev, A. J., Terry, M. A., Gryzlo, S. M., & Schafer, M. F. (2011). The Professional Athlete Spine Initiative: outcomes after lumbar disc herniation in 342 elite professional athletes. The Spine Journal, 11(3), 180-186.
    Inkster, B., Murphy, A., Bower, R., & Watsford, M. (2010). Differences in the kinematics of the baseball swing between hitters of varying skill. Journal of Science and Medicine in Sport, 12, e12-e13.
    Kato, M., & Yanai, T. (2022). Launch fly balls for better batting statistics: Applicability of “fly-ball revolution” to Japan’s professional baseball league. International Journal of Performance Analysis in Sport, 22(3), 437-453.
    Katsumata, H. (2007). A functional modulation for timing a movement: A coordinative structure in baseball hitting. Human movement science, 26(1), 27-47.
    Kidokoro, S., & Morishita, Y. (2021). Relationship between impact characteristics and launch direction in softball hitting: A study involving elite players. Plos One, 16(11), e0260520.
    Kindall, J., & Winkin, J. (2000). The baseball coaching bible. Human Kinetics.
    Mason, B. (1987). Ground reaction forces of elite Australian baseball batters. Biomechanics XB, 752.
    Roberts, D. W., Roc, G. J., & Hsu, W. K. (2011). Outcomes of cervical and lumbar disk herniations in Major League Baseball pitchers. Orthopedics, 34(8), 602-609.
    Segal, N. A., Hein, J., & Basford, J. R. (2004). The effects of Pilates training on flexibility and body composition: an observational study. Archives of physical medicine and rehabilitation, 85(12), 1977-1981.
    Severini, T. A. (2020). Analytic methods in sports: Using mathematics and statistics to understand data from baseball, football, basketball, and other sports. Chapman and Hall/CRC.
    Shinkle, J., Nesser, T. W., Demchak, T. J., & McMannus, D. M. (2012). Effect of core strength on the measure of power in the extremities. The Journal of Strength & Conditioning Research, 26(2), 373-380.
    Song, H.-S., Woo, S.-S., So, W.-Y., Kim, K.-J., Lee, J., & Kim, J.-Y. (2014). Effects of 16-week functional movement screen training program on strength and flexibility of elite high school baseball players. Journal of exercise rehabilitation, 10(2), 124.
    Stallings, J., & Bennett, B. (2003). Baseball strategies: Your guide to the game within the game. Champaign, IL.: Human Kinetics.
    Szymanski, D. J., DeRenne, C., & Spaniol, F. J. (2009). Contributing factors for increased bat swing velocity. The Journal of Strength & Conditioning Research, 23(4), 1338-1352.
    Szymanski, D. J., McIntyre, J. S., Szymanski, J. M., Molloy, J. M., Madsen, N. H., & Pascoe, D. D. (2006). Effect of wrist and forearm training on linear bat-end, center of percussion, and hand velocities and on time to ball contact of high school baseball players. The Journal of Strength & Conditioning Research, 20(1), 231-240.
    Szymanski, D. J., Szymanski, J. M., Bradford, T. J., Schade, R. L., & Pascoe, D. D. (2007). Effect of twelve weeks of medicine ball training on high school baseball players. The Journal of Strength & Conditioning Research, 21(3), 894-901.
    Tabuchi, K., Blundell, J., Etherton, M. R., Hammer, R. E., Liu, X., Powell, C. M., & Südhof, T. C. (2007). A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. science, 318(5847), 71-76.
    Welch, C. M., Banks, S. A., Cook, F. F., & Draovitch, P. (1995). Hitting a baseball: A biomechanical description. Journal of orthopaedic & sports physical therapy, 22(5), 193-201.
    Yang, W.-W., Liu, Y.-C., Chen, W.-H., Tai, H.-H., Sato, K., Ma, H.-P., & Liu, C. (2021). Hitting weighted baseball enhances the experience of bat–ball contacts. Sports biomechanics, 1-12.

    下載圖示
    QR CODE