簡易檢索 / 詳目顯示

研究生: 簡郁菱
Yu-Ling Chien
論文名稱: 可應用於學生專注度之人眼開闔偵測研究
Eye Opening Detection with Application for In-class Attention Monitoring
指導教授: 李忠謀
Lee, Chung-Mou
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 49
中文關鍵詞: 眼睛人臉偵測臉部特徵監控專注度監控系統睡意閉眼五關位置
英文關鍵詞: Eyes, Face detection, Facial features, Monitoring, Attention monitoring system, Drowsiness, Eye closure, facial features location
論文種類: 學術論文
相關次數: 點閱:155下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文提出一個即時的簡易偵測方式,著重於解決遠距離低解析度下,光源與雜訊干擾等問題,能使得眼睛在不同開闔程度下皆能擁有優良的辨識率。
      藉由使用人臉偵測、局部影像擷取、眼睛區域決策與眼睛區域-可靠度檢查,截取出完整且無遮蔽物的眼睛影像,並且在低解析度時也能明確的找出眼睛位置。再使用簡易、快速且不受光源影響的紋理特徵分佈影像,強化開眼闔眼的對比,得到平順、破碎或群集分佈的二值化影像,分析其中平均值、變異值與分群數的差異,能有效的偵測眼睛狀態。
      在實驗中可以證明,辨識速率非常的快,在一般複雜環境下表現優異,在遠距離中也並未受到外在環境的干擾。
      眼睛狀態偵測可搭配人臉偵測與移動偵測,來推廣至學生專注度偵測應用,能有效的辨識出學生專心狀態。

      This paper proposes a simple real-time method to detect eyes status, which focus on solving the problems of long-range camera, low-resolution image, light and noise interference and different degree of eyes open.
      By face detection, area of interest, eyes region decision and ER-reliable Decision, we can extract the eyes image without occultation. The methods also can find the position of eyes even with low resolution image. Furthermore, we apply a simple and fast method, texture features of distribution, to make the different status of eyes can be distinguished easily. After above step, we can get a smooth, broken or many clusters of image, which can be analyzed average, variation and the number of clusters to identify the status of eyes.
      By our experiment result, we can prove that our method can have a fast detection speed, and no matter the environment is under normal condition or low resolution with long distance camera.
      Therefore, we can use eye detection, face detection and motion detection, to promote a application for in-class attention Monitoring.

    附表目錄 v 附圖目錄 vi 第一章 簡介 1 第一節 研究動機 1 第二節 研究目的 1 第三節 研究範圍及限制 2 第二章 文獻探討 4 第一節 人臉偵測 4 第二節 眼睛狀態偵測 8 第三章 研究方法 10 第一節 人臉偵測(Face Detection) 12 3.1.1 Haar-Like Feature 12 3.1.2 AdaBoost Learning Algorithm 13 第二節 局部取像(AOI,Area of Interest) 16 第三節 眼睛區域決策(Eyes Region Decision) 18 第四節 眼睛區域-可靠度檢查(ER-Reliable Decision) 20 第五節 眼睛狀態決策 (Eyes Status Decision) 22 第四章 實驗 28 第一節 眼睛開闔辨識 30 第二節 結果與分析 33 第五章 應用 36 第一節 移動偵測 (Motion Detection) 36 第二節 學生專注度偵測架構 38 第三節 實驗 41 5.3.1 實驗規劃 41 5.3.2 結果與分析 42 第六章 結論 44 第一節 結論 44 第二節 未來研究 45 參考文獻 46

    [1]  M. H. Yang, D.J. Kriegman, and N. Ahuja, "Detecting faces in images: A survey, " Pattern Analysis and Machine Intelligence, IEEE Transactions, vol. 24, no. 1, pp. 34-58, 2002.
    [2]  G. Yang and T. S. Huang, "Human face detection in complex background, " Pattern Recognition, vol. 27, no. 1, pp. 53-63, 1994.
    [3]  K.C. Yow and R. Cipolla, "Feature-Based Human Face Detection," Image and Vision Computing, vol. 15, no. 9, pp. 713-735, 1997.
    [4]  T.K. Leung, M.C. Burl, and P. Perona, "Finding Faces in Cluttered Scenes Using Random Labeled Graph Matching, "Proc. Fifth IEEE Int’l Conf. Computer Vision, pp. 637-644, 1995.
    [5]  Y. Dai and Y. Nakano, "Face-Texture Model Based on SGLD and Its Application in Face Detection in a Color Scene, "Pattern Recognition, vol. 29, no. 6, pp. 1007-1017, 1996.
    [6]  S. McKenna, S. Gong, and Y. Raja, "Modeling Facial Color and Identity with Gaussian Mixtures, "Pattern Recognition, vol. 31, no. 12, pp. 1883-1892, 1998.
    [7]  J. Yang and A. Waibel, "A Real-Time Face Tracker," Proc. Third Workshop Applications of Computer Vision , pp. 142-147, 1996.
    [8]  R. Kjeldsen and J. Kender, "Finding Skin in Color Images, "Proc. Second Int’l Conf. Automatic Face and Gesture Recognition , pp.312-317, 1996.
    [9]  I. Craw, D. Tock, and A. Bennett, "Finding Face Features," Proc. Second European Conf. Computer Vision, pp. 92-96, 1992.
    [10]  A. Lanitis, C.J. Taylor, and T.F. Cootes, "An Automatic Face Identification System Using Flexible Appearance Models, " Image and Vision Computing, vol. 13, no. 5, pp. 393-401, 1995.
    [11]  M. Turk and A. Pentland, "Eigenfaces for Recognition, " J. Cognitive
    Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.
    [12]  K.-K. Sung and T. Poggio, "Example-Based Learning for View-Based Human Face Detection, " IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 1, pp. 39-51, Jan. 1998.
    [13]  H. Rowley, S. Baluja, and T. Kanade, "Neural Network-Based Face Detection," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 1, pp. 23-38, Jan. 1998.
    [14]  E. Osuna, R. Freund, and F. Girosi, "Training Support Vector Machines: An Application to Face Detection, " Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 130-136, 1997.
    [15]  H. Schneiderman and T. Kanade, "Probabilistic Modeling of Local Appearance and Spatial Relationships for Object Recognition, " Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 45-51, 1998.
    [16]  A. Rajagopalan, K. Kumar, J. Karlekar, R. Manivasakan, M. Patil, U. Desai, P. Poonacha, and S. Chaudhuri, "Finding Faces in Photographs," Pro c. Sixth IEEE Int’l Conf. Computer Vision , pp. 640-645, 1998.
    [17]  M.S. Lew, "Information Theoretic View-Based and Modular Face Detection, " Pro c. Second Int’l Conf. Automatic Face and Gesture Recognition, pp. 198-203, 1996.
    [18]   A. J . Co lmenarez and T.S. Hung, "Face Detection with Information-Based Maximum Discrimination," Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 782-787, 1997.
    [19]  Viola, P. and Jones, "Robust real-time face Detection," . Computer Vision, Eighth IEEE International Conference, pp. 747, 2001.
    [20]  HSU, R.-L., ABDEL-MOTTALEB, M., AND JAIN, A. K. "Face detection in color images," IEEE Trans. Pattern Analysis and Machine Intelligence vol. 24, no. 5, pp.696–706, 2002.
    [21]  G.C. Feng, P.C. Yuen, "Multi-cues eye detection on gray intensity image, " Pattern Recognition, vol.34, no. 5, pp.1033–1046, 2001.
    [22]  Z.H. Zhou and X. Geng, "Projection functions for eye detection, " Pattern Recognition vol.37, no. 5, pp.1049–1056, 2004.
    [23]  G.C. Feng, P.C. Yuen, "Variance projection function and its application to eye detection for human face recognition, " Pattern Recognition vol.19, no. 5, pp. 899–906, 1998.
    [24]  Loy, G. and Zelinsky, A. "A fast radial symmetry transform for detecting points of interest, " Proc. ECCV, pp.358-368, 2002.
    [25]   Nobuyuki Otsu. "A threshold selection method from gray-level histograms, " Systems, Man and Cybernetics, IEEE Transactions on vol.9, no. 1, pp.62–66, 1979.
    [26]   Y.-L. Tian, T. Kanade, and J. Cohn. "Eye-state action unit detection by gabor wavelets, "Proceedings of International Conference on Multi-modal Interfaces (ICMI 2000) , pp.143–150, 2000.
    [27]   H. Liu, Y. Wu, H. Zha. "Eye states detection from color facial image sequence, " Proc. SPIE The International Society for Optical Engineering vol. 4875, pp. 693–698, 2002.

    下載圖示
    QR CODE