研究生: |
童亢 Tung, Kang |
---|---|
論文名稱: |
運動後增補不同劑量葡萄糖對前期高血壓至高血壓男性之踝臂脈波傳導速率及血壓的效應 Effects of Difference in Glucose Intake on Brachial-Ankle PWV and Blood Pressure After Exercise in Men with Prehypertension and Hypertension |
指導教授: |
王鶴森
Wang, Ho-Seng |
口試委員: |
王鶴森
Wang, Ho-Seng 廖翊宏 Liao, Yi-Hung 林信甫 Lin, Hsin-Fu 陳忠慶 Chen, Chung-Ching 陳勇志 Chen, Yung-Chih |
口試日期: | 2023/02/08 |
學位類別: |
博士 Doctor |
系所名稱: |
體育與運動科學系 Department of Physical Education and Sport Sciences |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 運動後低血壓 、高血糖症 、心血管疾病 |
英文關鍵詞: | post-exercise hypotension, hyperglycemia, cardiovascular disease |
DOI URL: | http://doi.org/10.6345/NTNU202300729 |
論文種類: | 學術論文 |
相關次數: | 點閱:222 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:有氧運動能改善動脈硬化指標-脈波傳導速率 (pulse wave velocity, PWV) 及血壓,而增補葡萄糖會導致高血糖使PWV及血壓上升。研究指出,正常血壓者進行有氧運動能抵消75g葡萄糖增補造成血壓及PWV的負面影響,不過,目前對於非正常血壓者及不同劑量葡萄糖增補下是否有相同效應仍有待釐清。目的:探討前期高血壓者至高血壓男性在單次有氧運動後增補不同劑量葡萄糖對踝臂脈波傳導速率 (brachial-ankle PWV, baPWV) 及血壓之效應。方法:招募12位無規律運動之前期高血壓至高血壓的成年男性並檢測65% 儲備心跳率。接著,以雙盲及平衡次序之實驗設計,在65% HRR強度跑步機運動30分鐘後立即增補0g (安慰劑;PT)、25g (25T)、75g (75T) 葡萄糖三種實驗處理,每次實驗處理間隔至少7天。baPWV、血壓及血流調節舒張功能 (flow-mediated dilation, FMD) 於運動前、運動後30、60、90及120分鐘檢測。結果:不同劑量葡萄糖處理的baPWV在運動前皆無差異 (p > .05),75T之baPWV在運動後120分鐘顯著高於PT (p < .05),但25T之baPWV與PT無差異。PT之baPWV在運動後60及90分鐘顯著低於運動前 (p < .05);不同劑量葡萄糖處理的平均動脈壓 (mean arterial pressure, MAP) 在各時間點皆無差異,75T的MAP在運動前與後無差異,而25T的MAP在運動後60至120分鐘顯著低於運動前 (p < .05),PT的MAP在運動後60及90分鐘顯著低於運動前 (p < .05);不同劑量葡萄糖處理的FMD在運動前皆無差異 (p > .05),但75T之FMD在運動後各時間點皆顯著低於PT及25T (p < .05),而25T之FMD在運動後30至90分鐘顯著低於PT (p < .05)。PT之FMD在運動後各時間點皆顯著高於運動前 (p < .05)。結論:有氧運動後立即增補75g葡萄糖會造成baPWV和FMD短暫負面影響,以及抵消有氧運動後降低MAP的效益。當有氧運動後增補葡萄糖劑量降至25g能減少葡萄糖對FMD及baPWV造成的負面影響,並達到運動後降低MAP的效益。
Background: Aerobic exercise can improve pulse wave velocity (PWV) and blood pressure. On the other hand, glucose supplementation can lead to hyperglycemia, resulting in an increase in PWV and blood pressure. Studies have shown that aerobic exercise in individuals with normal blood pressure can counteract the negative effects of a 75g glucose supplementation on blood pressure and PWV. However, it remains unclear whether the same effects exist in men with prehypertension and hypertension or under different doses of glucose supplementation. Purpose: To examine the effects of difference dose in glucose intake on brachial-ankle PWV and blood pressure after exercise in men with prehypertension and hypertension. Methods: 12 sedentary adult males with prehypertension to hypertension was recruited, and test 65% heart rate reserve (HRR) before trails. All the Participants perform three treatments in a double-blind counterbalanced design that include 0 (placebo), 25 and 75 g of glucose ingestion immediately after perform 30 min of treadmill running at intensity of 65% HRR. Each treatment on separate 7 days at least. baPWV, blood pressure, and flow-mediated dilation would be measured at baseline and 30,60, 90 and 120 min post-exercise in all treatments. Results: baPWV did not differ significantly among different treatments at baseline (p > .05). baPWV after 75g glucose treatment was significantly higher than 0g glucose treatment at 120 min post-exercise (p < .05), but there was no significant difference in baPWV between 25g glucose treatment and 0g glucose treatment. baPWV of the 0g glucose treatment was significantly lower than baseline at 60 and 90 min post-exercise (p < .05). Mean arterial pressure (MAP) did not differ significantly among different treatments at any time point. MAP of the 75g glucose treatment showed no significant difference baseline and post-exercise, while the MAP of the 25g glucose treatment was significantly lower than baseline at 60 to 120 min post-exercise (p < .05). MAP of the 0g glucose treatment was significantly lower than baseline at 60 and 90 min post-exercise (p < .05). Flow-mediated dilation (FMD) did not differ significantly among different treatments baseline (p > .05). FMD of the 75g glucose treatment was significantly lower than the 0g and 25g glucose treatments at all post-exercise time points (p < .05), and FMD of the 25g glucose treatment was significantly lower than the 0g glucose treatment at 30 to 90 min post-exercise (p < .05). FMD of the 0g glucose treatment was significantly higher than baseline at all post-exercise time points (p < .05). Conclusion: 75g of glucose supplement immediately after aerobic exercise can cause short-term negative effects on baPWV and FMD, and it would offset aerobic exercise decrease MAP. The negative effects of glucose on FMD and baPWV could be reduced when the supplemental glucose dose was reduced to 25g after aerobic exercise, and lower MAP after aerobic exercise.
衛生福利部國民健康署(2019)。103-105年國民營養健康狀況變遷調查成果報告。臺北市:衛生福利部國民健康署。取自https://www.hpa.gov.tw/Pages/List.aspx?nodeid=3998
衛生福利部:民國107年國人十大死因,2018。取自https://www.mohw.gov.tw/cp-16-48057-1.html
衛生福利部國民健康署(2019)。106年健康促進統計年報。臺北市:衛生福利部國民健康署。
蔡忠憲、陳慈安、吳英黛 (2006)。動脈硬度和兩種非侵入量測方法之簡介-技術報告。 物理治療,31(5),316-324。
鄭景峰、林惠美、蔡欣潔、朱嘉華、林正常 (2005)。急性暴露於中海拔高地對於划船選手心跳率變異性的影響。體育學報,38(1),55-68。
Akimoto, Y., Kreppel, L. K., Hirano, H., & Hart, G. W. (2001). Hyperglycemia and the O-GlcNAc transferase in rat aortic smooth muscle cells: elevated expression and altered patterns of O-GlcNAcylation. Archives of Biochemistry and Biophysics, 389(2), 166-175.
Amador, N., de Jesús Encarnación, J., Rodríguez, L., Tello, A., López, M., & Guízar, J. M. (2004). Relationship between left ventricular mass and heart sympathetic activity in male obese subjects. Archives of Medical Research, 35(5), 411-415.
Anunciação, P. G., & Polito, M. D. (2011). A review on post-exercise hypotension in hypertensive individuals. Arquivos Brasileiros de Cardiologia, 96(5), 425-426.
Astorino, T. A., Martin, B. J., Wong, K., & Schachtsiek, L. (2011). Effect of acute caffeine ingestion on EPOC after intense resistance training. The Journal of Sports Medicine and Physical Fitness, 51(1), 11-17.
Baynard, T., Carhart, R. L., Weinstock, R. S., Ploutz-Snyder, L. L., & Kanaley, J. A. (2009). Short-term exercise training improves aerobic capacity with no change in arterial function in obesity. European Journal of Applied Physiology, 107(3), 299-308.
Bermudes, A. M. L. D. M., Vassallo, D. V., Vasquez, E. C., & Lima, E. G. (2004). Ambulatory blood pressure monitoring in normotensive individuals undergoing two single exercise sessions: resistive exercise training and aerobic exercise training. Arquivos Brasileiros De Cardiologia, 82(1), 57-64.
Bierhaus, A., Schiekofer, S., Schwaninger, M., Andrassy, M., Humpert, P. M., Chen, J., ... & Nawroth, P. P. (2001). Diabetes-associated sustained activation of the transcription factor nuclear factor-κB. Diabetes, 50(12), 2792-2808.
Birk, G. K., Dawson, E. A., Atkinson, C., Haynes, A., Cable, N. T., Thijssen, D. H., & Green, D. J. (2012). Brachial artery adaptation to lower limb exercise training: role of shear stress. Journal of Applied Physiology, 112(10), 1653-1658.
Blacher, J., Asmar, R., Djane, S., London, G. M., & Safar, M. E. (1999). Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension, 33(5), 1111-1117.
Blacher, J., & Safar, M. E. (2005). Large-artery stiffness, hypertension and cardiovascular risk in older patients. Nature Clinical Practice Cardiovascular Medicine, 2(9), 450-455.
Boulé, N. G., Haddad, E., Kenny, G. P., Wells, G. A., & Sigal, R. J. (2001). Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. Jama, 286(10), 1218-1227.
Bonetti, P. O., Lerman, L. O., & Lerman, A. (2003). Endothelial dysfunction: a marker of atherosclerotic risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(2), 168-175.
Brestoff, J. R., Clippinger, B., Spinella, T., von Duvillard, S. P., Nindl, B., & Arciero, P. J. (2009). An acute bout of endurance exercise but not sprint interval exercise enhances insulin sensitivity. Applied Physiology, Nutrition, and Metabolism, 34(1), 25-32.
Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865), 813-820.
Bushman, B. A. (2011). ACSM's Complete Guide to Fitness & Health. Human Kinetics.
Cagliero, E., Maiello, M., Boeri, D., Roy, S., & Lorenzi, M. (1988). Increased expression of basement membrane components in human endothelial cells cultured in high glucose. The Journal of Clinical Investigation, 82(2), 735-738.
Campos, H. A., Montenegro, M., Velasco, M., Romero, E., Alvarez, R., & Urbina, A. (1999). Treadmill exercise-induced stress causes a rise of blood histamine in normotensive but not in primary hypertensive humans. European Journal of Pharmacology, 383(1), 69-73.
Cardoso Jr, C. G., Gomides, R. S., Queiroz, A. C. C., Pinto, L. G., Lobo, F. D. S., Tinucci, T., ... & Forjaz, C. L. D. M. (2010). Acute and chronic effects of aerobic and resistance exercise on ambulatory blood pressure. Clinics, 65(3), 317-325.
Cecelja, M., & Chowienczyk, P. (2009). Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension, 54(6), 1328-1336.
Cermak, N. M., & van Loon, L. J. (2013). The use of carbohydrates during exercise as an ergogenic aid. Sports Medicine, 43(11), 1139-1155.
Chae, Y. M., & Park, J. K. (2009). The relationship between brachial ankle pulse wave velocity and complement 1 inhibitor. Journal of Korean Medical Science, 24(5), 831-836.
Chen, C. Y., & Bonham, A. C. (2010). Postexercise hypotension: central mechanisms. Exercise and Sport Sciences Reviews, 38(3), 122-127.
Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo Jr, J. L., ... & Roccella, E. J. (2003). Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension, 42(6), 1206-1252.
Ciolac, E. G., Guimarães, G. V., Bortolotto, L. A., Doria, E. L., & Bocchi, E. A. (2008). Acute aerobic exercise reduces 24-h ambulatory blood pressure levels in long-term-treated hypertensive patients. Clinics, 63(6), 753-758.
Clerk, L. H., Vincent, M. A., Jahn, L. A., Liu, Z., Lindner, J. R., & Barrett, E. J. (2006). Obesity blunts insulin-mediated microvascular recruitment in human forearm muscle. Diabetes, 55(5), 1436-1442.
Coderre, L., Kandror, K. V., Vallega, G., & Pilch, P. F. (1995). Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. Journal of Biological Chemistry, 270(46), 27584-27588.
Cornelissen, V. A., & Fagard, R. H. (2005). Effects of endurance training on blood pressure, blood pressure–regulating mechanisms, and cardiovascular risk factors. Hypertension, 46(4), 667-675.
Credeur, D. P., Reynolds, L. J., Holwerda, S. W., Vranish, J. R., Young, B. E., Wang, J., ... & Fadel, P. J. (2018). Influence of physical inactivity on arterial compliance during a glucose challenge. Experimental Physiology, 103(4), 483-494.
Cruickshank, K., Riste, L., Anderson, S. G., Wright, J. S., Dunn, G., & Gosling, R. G. (2002). Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function?. Circulation, 106(16), 2085-2090.
Dart, A. M., & Kingwell, B. A. (2001). Pulse pressure—a review of mechanisms and clinical relevance. Journal of the American College of Cardiology, 37(4), 975-984.
Das, E. K., Lai, P. Y., Robinson, A. T., Pleuss, J., Ali, M. M., Haus, J. M., ... & Phillips, S. A. (2018). Regular aerobic, resistance, and cross-training exercise prevents reduced vascular function following a high sugar or high fat mixed meal in young healthy adults. Frontiers in Physiology, 9.183-196
Daugaard, J. R., Nielsen, J. N., Kristiansen, S., Andersen, J. L., Hargreaves, M., & Richter, E. A. (2000). Fiber type-specific expression of GLUT4 in human skeletal muscle: influence of exercise training. Diabetes, 49(7), 1092-1095.
Dawson, E. A., Green, D. J., Timothy Cable, N., & Thijssen, D. H. (2013). Effects of acute exercise on flow-mediated dilatation in healthy humans. Journal of Applied Physiology, 115(11), 1589-1598.
da Silva, A. A., do Carmo, J. M., Li, X., Wang, Z., Mouton, A. J., & Hall, J. E. (2020). Role of hyperinsulinemia and insulin resistance in hypertension: metabolic syndrome revisited. Canadian Journal of Cardiology, 36(5), 671-682.
Delles, C., Zimmerli, L. U., McGrane, D. J., Koh-Tan, C. H., Pathi, V. L., McKay, A. J., ... & Dominiczak, A. F. (2008). Vascular stiffness is related to superoxide generation in the vessel wall. Journal of Hypertension, 26(5), 946-955.
Du, X. L., Edelstein, D., Rossetti, L., Fantus, I. G., Goldberg, H., Ziyadeh, F., ... & Brownlee, M. (2000). Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proceedings of the National Academy of Sciences, 97(22), 12222-12226.
Duncan, G. E., Perri, M. G., Theriaque, D. W., Hutson, A. D., Eckel, R. H., & Stacpoole, P. W. (2003). Exercise training, without weight loss, increases insulin sensitivity and postheparin plasma lipase activity in previously sedentary adults. Diabetes Care, 26(3), 557-562.
Eicher, J. D., Maresh, C. M., Tsongalis, G. J., Thompson, P. D., & Pescatello, L. S. (2010). The additive blood pressure lowering effects of exercise intensity on post-exercise hypotension. American Heart Journal, 160(3), 513-520.
Eringa, E. C., Stehouwer, C. D., Walburg, K., Clark, A. D., van Nieuw Amerongen, G. P., Westerhof, N., & Sipkema, P. (2006). Physiological concentrations of insulin induce endothelin-dependent vasoconstriction of skeletal muscle resistance arteries in the presence of tumor necrosis factor-α dependence on c-Jun N-terminal kinase. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(2), 274-280.
Fan, J., Liu, L. Y., & Liu, X. Z. (2021). Hyperinsulinemia negatively affects the association between insulin resistance and blood pressure. Nutrition, Metabolism and Cardiovascular Diseases, 31(12), 3359-3366.
Federici, M., Menghini, R., Mauriello, A., Hribal, M. L., Ferrelli, F., Lauro, D., ... & Lauro, R. (2002). Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation, 106(4), 466-472.
Fellmann, L., Nascimento, A. R., Tibiriça, E., & Bousquet, P. (2013). Murine models for pharmacological studies of the metabolic syndrome. Pharmacology & Therapeutics, 137(3), 331-340.
Figueira, F. R., Umpierre, D., Casali, K. R., Tetelbom, P. S., Henn, N. T., Ribeiro, J. P., & Schaan, B. D. (2013). Aerobic and combined exercise sessions reduce glucose variability in type 2 diabetes: crossover randomized trial. PloS One, 8(3), e57733.
Forjaz, C. L., Ortega, K. C., Santaella, D. F., Mion Jr, D., & Negrão, C. E. (2000). Factors affecting post-exercise hypotension in normotensive and hypertensive humans. Blood Pressure Monitoring, 5(5), 255-262.
Frampton, J., Cobbold, B., Nozdrin, M., Oo, H. T., Wilson, H., Murphy, K. G., ... & Chambers, E. S. (2021). The effect of a single bout of continuous aerobic exercise on glucose, insulin and glucagon concentrations compared to resting conditions in healthy adults: a systematic review, meta-analysis and meta-regression. Sports Medicine, 51(9), 1949-1966.
Franklin, S. S., Gustin IV, W., Wong, N. D., Larson, M. G., Weber, M. A., Kannel, W. B., & Levy, D. (1997). Hemodynamic patterns of age-related changes in blood pressure: the Framingham Heart Study. Circulation, 96(1), 308-315.
Gabriely, I., Yang, X. M., Cases, J. A., Ma, X. H., Rossetti, L., & Barzilai, N. (2002). Hyperglycemia induces PAI-1 gene expression in adipose tissue by activation of the hexosamine biosynthetic pathway. Atherosclerosis, 160(1), 115-122.
Gaster, M., Staehr, P., Beck-Nielsen, H., Schrøder, H. D., & Handberg, A. (2001). GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease?. Diabetes, 50(6), 1324-1329.
Goto, C., Nishioka, K., Umemura, T., Jitsuiki, D., Sakagutchi, A., Kawamura, M., ... & Higashi, Y. (2007). Acute moderate-intensity exercise induces vasodilation through an increase in nitric oxide bioavailiability in humans. American Journal of Hypertension, 20(8), 825-830.
Grasser, E. K., Dulloo, A., & Montani, J. P. (2014). Cardiovascular responses to the ingestion of sugary drinks using a randomised cross-over study design: does glucose attenuate the blood pressure-elevating effect of fructose?. British Journal of Nutrition, 112(2), 183-192.
Gravholt, C. H., Nyholm, B., Saltin, B., Schmitz, O., & Christiansen, J. S. (2001). Muscle fiber composition and capillary density in Turner syndrome: evidence of increased muscle fiber size related to insulin resistance. Diabetes Care, 24(9), 1668-1673.
Grover-Páez, F., & Zavalza-Gómez, A. B. (2009). Endothelial dysfunction and cardiovascular risk factors. Diabetes Research and Clinical Practice, 84(1), 1-10.
Guelfi, K. J., Jones, T. W., & Fournier, P. A. (2005). The decline in blood glucose levels is less with intermittent high-intensity compared with moderate exercise in individuals with type 1 diabetes. Diabetes Care, 28(6), 1289-1294.
Gustafson, T. A., He, W., Craparo, A., Schaub, C. D., & O'Neill, T. J. (1995). Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain. Molecular and Cellular biology, 15(5), 2500-2508.
Halliwill, J. R. (2001). Mechanisms and clinical implications of post-exercise hypotension in humans. Exercise and Sport Sciences Reviews, 29(2), 65-70.
Halliwill, J. R., Buck, T. M., Lacewell, A. N., & Romero, S. A. (2013). Postexercise hypotension and sustained postexercise vasodilatation: what happens after we exercise?. Experimental Physiology, 98(1), 7-18.
Hamer, M. (2006). The anti-hypertensive effects of exercise. Sports Medicine, 36(2), 109-116.
Harris, R. A., Nishiyama, S. K., Wray, D. W., & Richardson, R. S. (2010). Ultrasound assessment of flow-mediated dilation. Hypertension, 55(5), 1075-1085.
Harvey, P. J., Morris, B. L., Kubo, T., Picton, P. E., Su, W. S., Notarius, C. F., & Floras, J. S. (2005). Hemodynamic after-effects of acute dynamic exercise in sedentary normotensive postmenopausal women. Journal of Hypertension, 23(2), 285-292.
Haskell, W. L., Lee, I. M., Pate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A., ... & Bauman, A. (2007). Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation, 116(9), 1081-1093.
Hayashi, T., Hirshman, M. F., Fujii, N. S. A. H., Habinowski, S. A., Witters, L. A., & Goodyear, L. J. (2000). Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes, 49(4), 527-531.
Hayano, J., Sakakibara, Y., Yamada, M., Ohte, N., Fujinami, T., & Yokoyama, K., ... Takata, K. (1990). Decreased magnitude of heart rate spectral components in coronary artery disease. Its relation to angiographic severity. Circulation, 81(4), 1217-1224.
Heffernan, K. S., Collier, S. R., Kelly, E. E., Jae, S. Y., & Fernhall, B. (2007). Arterial stiffness and baroreflex sensitivity following bouts of aerobic and resistance exercise. International Journal of Sports Medicine, 28(03), 197-203.
Hietanen, H., Pääkkönen, R., & Salomaa, V. (2008). Ankle blood pressure as a predictor of total and cardiovascular mortality. BMC Cardiovascular Disorders, 8(1), 3.
Hill, S. J. (1990). Distribution, properties, and functional characteristics of three classes of histamine receptor. Pharmacological Reviews, 42(1), 45-83.
Hirata, K., Kawakami, M., & O'Rourke, M. F. (2006). Pulse wave analysis and pulse wave velocity. Circulation Journal, 70(10), 1231-1239.
Hoiland, R. L. (2015). Is nitric oxide mediated sympatholysis improved with exercise? Yes or nNO?. The Journal of Physiology, 593(Pt 5), 1045-1046.
Huang, C. L., Chen, M. F., Jeng, J. S., Lin, L. Y., Wang, W. L., Feng, M. H., ... & Su, T. C. (2007). Postchallenge hyperglycaemic spike associate with arterial stiffness. International Journal of Clinical Practice, 61(3), 397-402.
Huang, P. L. (2009). eNOS, metabolic syndrome and cardiovascular disease. Trends in Endocrinology & Metabolism, 20(6), 295-302.
Hwu, C. M., Liou, T. L., Hsiao, L. C., & Lin, M. W. (2009). Prehypertension is associated with insulin resistance. QJM: An International Journal of Medicine, 102(10), 705-711.
Ivy, J. L. (1999). Role of carbohydrate in physical activity. Clinical Sports Medicine, 18(3),469-484
Ivy, J. L., & Kuo, C. H. (1998). Regulation of GLUT4 protein and glycogen synthase during muscle glycogen synthesis after exercise. Acta Physiologica Scandinavica, 162(3), 295-304.
Ivy, J. L., Zderic, T. W., & Fogt, D. L. (1999). Prevention and treatment of non-insulin-dependent diabetes mellitus. Exercise and Sport Sciences Reviews, 27, 1-35.
Jacome-Sosa, M., Parks, E. J., Bruno, R. S., Tasali, E., Lewis, G. F., Schneeman, B. O., & Rains, T. M. (2016). Postprandial metabolism of macronutrients and cardiometabolic risk: recent developments, emerging concepts, and future directions. Advances in Nutrition, 7(2), 364-374.
Jia, G., DeMarco, V. G., & Sowers, J. R. (2016). Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nature Reviews Endocrinology, 12(3), 144-153.
Jones, D. W., & Hall, J. E. (2004). Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure and evidence from new hypertension trials. Hypertension, 43(1), 1-3.
Jungersten, L., Ambring, A., Wall, B., & Wennmalm, Å. (1997). Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans. Journal of Applied Physiology, 82(3), 760-764.
Kaneto, H., Xu, G., Song, K. H., Suzuma, K., Bonner-Weir, S., Sharma, A., & Weir, G. C. (2001). Activation of the hexosamine pathway leads to deterioration of pancreatic β-cell function through the induction of oxidative stress. Journal of Biological Chemistry, 276(33), 31099-31104.
Kenney, M. J., & Seals, D. R. (1993). Postexercise hypotension. Key features, mechanisms, and clinical significance. Hypertension, 22(5), 653-664.
Kern, M., Wells, J. A., Stephens, J. M., Elton, C. W., Friedman, J. E., Tapscott, E. B., ... & Dohm, G. L. (1990). Insulin responsiveness in skeletal muscle is determined by glucose transporter (Glut4) protein level. Biochemical Journal, 270(2), 397-400.
Kim, J. A., Montagnani, M., Koh, K. K., & Quon, M. J. (2006). Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation, 113(15), 1888-1904.
Kim, F., Gallis, B., & Corson, M. A. (2001). TNF-α inhibits flow and insulin signaling leading to NO production in aortic endothelial cells. American Journal of Physiology-Cell Physiology, 280(5), C1057-C1065.
King, D. S., Baldus, P. J., Sharp, R. L., Kesl, L. D., Feltmeyer, T. L., & Riddle, M. S. (1995). Time course for exercise-induced alterations in insulin action and glucose tolerance in middle-aged people. Journal of Applied Physiology, 78(1), 17-22.
Kingwell, B. A., Berry, K. L., Cameron, J. D., Jennings, G. L., & Dart, A. M. (1997). Arterial compliance increases after moderate-intensity cycling. American Journal of Physiology-Heart and Circulatory Physiology, 273(5), H2186-H2191.
Knuttgen, H. G. (2007). Strength training and aerobic exercise: comparison and contrast. The Journal of Strength and Conditioning Research, 21(3), 973-978.
Kobayashi, R., Yoshida, S., & Okamoto, T. (2015). Arterial stiffness after glucose ingestion in exercise-trained versus untrained men. Applied Physiology, Nutrition, and Metabolism, 40(11), 1151-1156.
Kobayashi, R., Yoshida, S., & Okamoto, T. (2017). Effects of acute aerobic exercise on arterial stiffness before and after glucose ingestion. International Journal of Sports Medicine, 38(01), 12-18.
Kobayashi, R., Hashimoto, Y., Hatakeyama, H., & Okamoto, T. (2018). Acute effects of aerobic exercise intensity on arterial stiffness after glucose ingestion in young men. Clinical Physiology and Functional Imaging, 38(1), 138-144.
Kobayashi, R., Hashimoto, Y., Hatakeyama, H., & Okamoto, T. (2019a). Acute effects of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion. Clinical and Experimental Hypertension, 41(2), 123-129.
Kobayashi, R., Sato, K., Takahashi, T., Asaki, K., Iwanuma, S., Ohashi, N., & Hashiguchi, T. (2019b). Arterial stiffness during hyperglycemia in older adults with high physical activity vs low physical activity. Journal of Clinical Biochemistry and Nutrition, 19-32.
Kobayashi, R., Sato, K., Takahashi, T., Asaki, K., Iwanuma, S., Ohashi, N., & Hashiguchi, T. (2020). Effects of a short-term increase in physical activity on arterial stiffness during hyperglycemia. Journal of Clinical Biochemistry and Nutrition, 66(3), 238-244.
Kobayashi, R., Sato, K., Sakazaki, M., Nagai, Y., Iwanuma, S., Ohashi, N., & Hashiguchi, T. (2021). Acute effects of difference in glucose intake on arterial stiffness in healthy subjects. Cardiology Journal, 28(3), 446-452.
Laurent, S., Cockcroft, J., Van Bortel, L., Boutouyrie, P., Giannattasio, C., Hayoz, D., ... & Struijker-Boudier, H. (2006). Expert consensus document on arterial stiffness: methodological issues and clinical applications. European Heart Journal, 27(21), 2588-2605.
Lee, C. L., Cheng, C. F., Lee, W. C., & Lin, J. C. (2007). The acute effects of inhaling different concentrations of oxygen on heart rate variability after exhausting exercise. Journal of Exercise Science and Fitness, 5(1), 56-64.
Li, C. H., Wu, J. S., Yang, Y. C., Shih, C. C., Lu, F. H., & Chang, C. J. (2012). Increased arterial stiffness in subjects with impaired glucose tolerance and newly diagnosed diabetes but not isolated impaired fasting glucose. The Journal of Clinical Endocrinology and Metabolism, 97(4), E658-E662.
Lillioja, S., Young, A. A., Culter, C. L., Ivy, J. L., Abbott, W. G., Zawadzki, J. K., ... & Bogardus, C. (1987). Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. The Journal of Clinical Investigation, 80(2), 415-424.
Limberg, J. K., Smith, J. A., Soares, R. N., Harper, J. L., Houghton, K. N., Jacob, D. W., ... & Padilla, J. (2020). Sympathetically mediated increases in cardiac output, not restraint of peripheral vasodilation, contribute to blood pressure maintenance during hyperinsulinemia. American Journal of Physiology-Heart and Circulatory Physiology, 319(1), H162-H170.
Liu, S., Goodman, J., Nolan, R., Lacombe, S., & Thomas, S. G. (2012). Blood pressure responses to acute and chronic exercise are related in prehypertension. Medicine Science in Sports Exercise, 44(9), 1644-1652.
Loader, J., Montero, D., Lorenzen, C., Watts, R., Méziat, C., Reboul, C., ... & Walther, G. (2015). Acute hyperglycemia impairs vascular function in healthy and cardiometabolic diseased subjects: systematic review and meta-analysis. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(9), 2060-2072.
Lockwood, J. M., Wilkins, B. W., & Halliwill, J. R. (2005). H1 receptor‐mediated vasodilatation contributes to postexercise hypotension. The Journal of Physiology, 563(2), 633-642.
Lokaj, P., Parenica, J., Goldbergova, M. P., Helanová, K., Miklik, R., Kubena, P., ... & Spinar, J. (2011). Pulse pressure in clinical practice. European Journal of Cardiovascular Medicine, 2(1), 66-68.
London, G. M., Blacher, J., Pannier, B., Guérin, A. P., Marchais, S. J., & Safar, M. E. (2001). Arterial wave reflections and survival in end-stage renal failure. Hypertension, 38(3), 434-438.
Love, D. C., & Hanover, J. A. (2005). The hexosamine signaling pathway: deciphering the" O-GlcNAc code". Science's STKE, 2005(312), re13-re13.
MacDonald, J. R. (2002). Potential causes, mechanisms, and implications of post exercise hypertension. Journal of Human Hypertension, 16(4), 225-236.
MacDonald, J. R., MacDougall, J. D., & Hogben, C. D. (2000). The effects of exercise duration on post-exercise hypotension. Journal of Human Hypertension, 14(2), 125-129.
Maeda, S., Miyauchi, T., Kakiyama, T., Sugawara, J., Iemitsu, M., Irukayama-Tomobe, Y., ... & Matsuda, M. (2001). Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sciences, 69(9), 1005-1016.
Mah, E., & Bruno, R. S. (2012). Postprandial hyperglycemia on vascular endothelial function: mechanisms and consequences. Nutrition Research, 32(10), 727-740.
Malin, S. K., Gilbertson, N. M., Eichner, N. Z., Heiston, E., Miller, S., & Weltman, A. (2019). Impact of short-term continuous and interval exercise training on endothelial function and glucose metabolism in prediabetes. Journal of Diabetes Research, 2019. 4912174
Manders, R. J., & Van, J. D. (2010). Low-intensity exercise reduces the prevalence of hyperglycemia in type 2 diabetes. Medicine and Science in Sports and Exercise, 42(2), 219-225.
Manrique, C., Lastra, G., & Sowers, J. R. (2014). New insights into insulin action and resistance in the vasculature. Annals of the New York Academy of Sciences, 1311(1), 138-150.
Martens, F. M., Rabelink, T. J., op't Roodt, J., de Koning, E. J., & Visseren, F. L. (2006). TNF-α induces endothelial dysfunction in diabetic adults, an effect reversible by the PPAR-γ agonist pioglitazone. European Heart Journal, 27(13), 1605-1609.
Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412-419.
Mazzone, T., Chait, A., & Plutzky, J. (2008). Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. The Lancet, 371(9626), 1800-1809.
McAuley, K. A., Williams, S. M., Mann, J. I., Walker, R. J., Lewis-Barned, N. J., Temple, L. A., & Duncan, A. W. (2001). Diagnosing insulin resistance in the general population. Diabetes Care, 24(3), 460-464.
McCoy, M. I. C. H. A. E. L., Proietto, J. O. S. E. P. H., & Hargreaves, M. A. R. K. (1996). Skeletal muscle GLUT-4 and postexercise muscle glycogen storage in humans. Journal of Applied Physiology, 80(2), 411-415.
McCord, J. L., Beasley, J. M., & Halliwill, J. R. (2006). H2-receptor-mediated vasodilation contributes to postexercise hypotension. Journal of Applied Physiology, 100(1), 67-75.
McClean, C. M., McNeilly, A. M., Trinick, T. R., Murphy, M. H., Duly, E., McLaughlin, J., ... & Davison, G. W. (2009). Acute exercise and impaired glucose tolerance in obese humans. Journal of Clinical Lipidology, 3(4), 262-268.
McEniery, C. M. (2006). Novel therapeutic strategies for reducing arterial stiffness. British Journal of Pharmacology, 148(7), 881-883.
McEniery, C. M., Wilkinson, I. B., & Avolio, A. P. (2007). Age, hypertension and arterial function. Clinical and Experimental Pharmacology and Physiology, 34(7), 665-671.
Megeney, L. A., Neufer, P. D., Dohm, G. L., Tan, M. H., Blewett, C. A., Elder, G. C., & Bonen, A. (1993). Effects of muscle activity and fiber composition on glucose transport and GLUT-4. American Journal of Physiology-Endocrinology and Metabolism, 264(4), E583-E593.
Milatz, F., Ketelhut, S., Ketelhut, R. G., & Ketelhut, R. G. (2015). Favorable effect of aerobic exercise on arterial pressure and aortic pulse wave velocity during stress testing. Vasa, 44(4), 271-276.
Mitchell, J. B., Rowe, J. R., Shah, M., Barbee, J. J., Watkins, A. M., Stephens, C., & Simmons, S. (2008). Effect of prior exercise on postprandial triglycerides in overweight young women after ingesting a high-carbohydrate meal. International Journal of Sport Nutrition and Exercise Metabolism, 18(1), 49-65.
Monnier, L., Mas, E., Ginet, C., Michel, F., Villon, L., Cristol, J. P., & Colette, C. (2006). Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. Jama, 295(14), 1681-1687.
Montagnani, M., Golovchenko, I., Kim, I., Koh, G. Y., Goalstone, M. L., Mundhekar, A. N., ... & Draznin, B. (2002). Inhibition of phosphatidylinositol 3-kinase enhances mitogenic actions of insulin in endothelial cells. Journal of Biological Chemistry, 277(3), 1794-1799.
Moraes, M. R., Bacurau, R. F., Ramalho, J. D., Reis, F. C., Casarini, D. E., Chagas, J. R., ... & Pesquero, J. B. (2007). Increase in kinins on post-exercise hypotension in normotensive and hypertensive volunteers. Biological Chemistry, 388(5), 533-540.
Mortensen, S. P., Nyberg, M., Thaning, P., Saltin, B., & Hellsten, Y. (2009). Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation. Hypertension, 53(6), 993-999.
Mullican, D. R., Lorenzo, C., & Haffner, S. M. (2009). Is prehypertension a risk factor for the development of type 2 diabetes?. Diabetes Care, 32(10), 1870-1872.
Muniyappa, R., Chen, H., Montagnani, M., Sherman, A., & Quon, M. J. (2020). Endothelial dysfunction due to selective insulin resistance in vascular endothelium: insights from mechanistic modeling. American Journal of Physiology-Endocrinology and Metabolism, 319(3), E629-E646.
Muniyappa, R., Montagnani, M., Koh, K. K., & Quon, M. J. (2007). Cardiovascular actions of insulin. Endocrine reviews, 28(5), 463-491.
Muniyappa, R., & Quon, M. J. (2007). Insulin action and insulin resistance in vascular endothelium. Current Opinion in Clinical Nutrition & Metabolic Care, 10(4), 523-530.
Nakagomi, A., Sunami, Y., Okada, S., Ohno, Y., Shoji, T., Fujisawa, T., & Kobayashi, Y. (2018). Association between 1-h post-load plasma glucose levels and arterial stiffness in normotensive subjects with normal glucose tolerance. Diabetes and Vascular Disease Research, 15(1), 39-45.
Nassis, G. P., Papantakou, K., Skenderi, K., Triandafillopoulou, M., Kavouras, S. A., Yannakoulia, M., ... & Sidossis, L. S. (2005). Aerobic exercise training improves insulin sensitivity without changes in body weight, body fat, adiponectin, and inflammatory markers in overweight and obese girls. Metabolism, 54(11), 1472-1479.
Nystrom, F. H., & Quon, M. J. (1999). Insulin signalling: metabolic pathways and mechanisms for specificity. Cellular Signalling, 11(8), 563-574.
O’Donovan, C., Lithander, F. E., Raftery, T., Gormley, J., Mahmud, A., & Hussey, J. (2014). Inverse relationship between physical activity and arterial stiffness in adults with hypertension. Journal of Physical Activity and Health, 11(2), 272-277.
Otsuki, T., Maeda, S., Iemitsu, M., Saito, Y., Tanimura, Y., Ajisaka, R., & Miyauchi, T. (2007). Vascular endothelium-derived factors and arterial stiffness in strength-and endurance-trained men. American Journal of Physiology-Heart and Circulatory Physiology, 292(2), H786-H791.
O’Rourke, M. F., Staessen, J. A., Vlachopoulos, C., & Duprez, D. (2002). Clinical applications of arterial stiffness; definitions and reference values. American Journal of Hypertension, 15(5), 426-444.
Paik, J. K., Kim, M., Kwak, J. H., Lee, E. K., Lee, S. H., & Lee, J. H. (2013). Increased arterial stiffness in subjects with impaired fasting glucose. Journal of Diabetes and its Complications, 27(3), 224-228
Pau, M., Leban, B., Collu, G., & Migliaccio, G. M. (2014). Effect of light and vigorous physical activity on balance and gait of older adults. Archives of Gerontology and Geriatrics, 59(3), 568-573.
Perrier-Melo, R. J., Germano-Soares, A. H., Brito, A. F., Dantas, I. V., & Costa, M. D. C. (2021). Post-exercise hypotension in response to high-intensity interval exercise: Potential mechanisms. Rev Port Cardiol (Engl Ed), 40(10), 797-9.
Player, M. S., Mainous III, A. G., Diaz, V. A., & Everett, C. J. (2007). Prehypertension and insulin resistance in a nationally representative adult population. The Journal of Clinical Hypertension, 9(6), 424-429.
Potenza, M. A., Marasciulo, F. L., Chieppa, D. M., Brigiani, G. S., Formoso, G., Quon, M. J., & Montagnani, M. (2005). Insulin resistance in spontaneously hypertensive rats is associated with endothelial dysfunction characterized by imbalance between NO and ET-1 production. American Journal of Physiology-Heart and Circulatory Physiology, 289(2), H813-H822.
Quinn, T. J. (2000). Twenty-four hour, ambulatory blood pressure responses following acute exercise: impact of exercise intensity. Journal of Human Hypertension, 14(9), 547-553.
Rajapakse, A. G., Ming, X. F., Carvas, J. M., & Yang, Z. (2009). The hexosamine biosynthesis inhibitor azaserine prevents endothelial inflammation and dysfunction under hyperglycemic condition through antioxidant effects. American Journal of Physiology-Heart and Circulatory Physiology, 296(3), H815-H822.
Rask-Madsen, C., Domínguez, H., Ihlemann, N., Hermann, T., Køber, L., & Torp-Pedersen, C. (2003). Tumor necrosis factor-α inhibits insulin’s stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans. Circulation, 108(15), 1815-1821.
Reusch, J. E., Bhuripanyo, P., Carel, K., Leitner, J. W., Hsieh, P., DePaolo, D., & Draznin, B. (1995). Differential requirement for p21ras activation in the metabolic signaling by insulin. Journal of Biological Chemistry, 270(5), 2036-2040.
Ripoll, E., Sillau, A. H., & Banchero, N. (1979). Changes in the capillarity of skeletal muscle in the growing rat. Pflügers Archiv, 380(2), 153-158.
Robertson, D., Wade, D., & Robertson, R. M. (1981). Postprandial alterations in cardiovascular hemodynamics in autonomic dysfunctional states. The American Journal of Cardiology, 48(6), 1048-1052.
Rockl, K. S., Witczak, C. A., & Goodyear, L. J. (2008). Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life, 60(3), 145-153.
Röckl, K. S., Hirshman, M. F., Brandauer, J., Fujii, N., Witters, L. A., & Goodyear, L. J. (2007). Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift. Diabetes, 56(8), 2062-2069.
Röckl, K. S., Witczak, C. A., & Goodyear, L. J. (2008). Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life, 60(3), 145-153.
Rolo, A. P., & Palmeira, C. M. (2006). Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicology and Applied Pharmacology, 212(2), 167-178.
Rossow, L., Yan, H., Fahs, C. A., Ranadive, S. M., Agiovlasitis, S., Wilund, K. R., ... & Fernhall, B. (2010). Postexercise hypotension in an endurance-trained population of men and women following high-intensity interval and steady-state cycling. American Journal of Hypertension, 23(4), 358-367.
Ryan, A. S. (2000). Insulin resistance with aging. Sports Medicine, 30(5), 327-346.
Rydén, L., Standl, E., Bartnik, M., Van den Berghe, G., Betteridge, J., De Boer, M. J., ... & Priori, S. (2007). Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary: The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). European Heart Journal, 28(1), 88-136.
Rynders, C. A., Weltman, J. Y., Jiang, B., Breton, M., Patrie, J., Barrett, E. J., & Weltman, A. (2014). Effects of exercise intensity on postprandial improvement in glucose disposal and insulin sensitivity in prediabetic adults. The Journal of Clinical Endocrinology & Metabolism, 99(1), 220-228.
Safar, M. (2006). Arterial stiffness: a simplified overview in vascular medicine. Advances in Cardiology, 44, 1-18.
Sakai, K., Matsumoto, K., Nishikawa, T., Suefuji, M., Nakamaru, K., Hirashima, Y., ... & Araki, E. (2003). Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic β-cells. Biochemical and Biophysical Research Communications, 300(1), 216-222.
Salmanpour, A., Brown, L. J., & Shoemaker, J. K. (2010). Spike detection in human muscle sympathetic nerve activity using a matched wavelet approach. Journal of Neuroscience Methods, 193(2), 343-355.
Sartori, C., Trueb, L., Nicod, P., & Scherrer, U. (1999). Effects of sympathectomy and nitric oxide synthase inhibition on vascular actions of insulin in humans. Hypertension, 34(4), 586-589.
Schram, M. T., Henry, R. M., van Dijk, R. A., Kostense, P. J., Dekker, J. M., Nijpels, G., ... & Stehouwer, C. D. (2004). Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes: the Hoorn Study. Hypertension, 43(2), 176-181.
Seals, D. R., Moreau, K. L., Gates, P. E., & Eskurza, I. (2006). Modulatory influences on ageing of the vasculature in healthy humans. Experimental Gerontology, 41(5), 501-507.
Sengstock, D. M., Vaitkevicius, P. V., & Supiano, M. A. (2005). Arterial stiffness is related to insulin resistance in nondiabetic hypertensive older adults. The Journal of Clinical Endocrinology and Metabolism, 90(5), 2823-2827.
Shafrir, E. (1996). Development and consequences of insulin resistance: lessons from animals with hyperinsulinaemia. Diabetes & Metabolism, 22(2), 122-131.
Shin, Y., Park, S., & Choue, R. (2009). Comparison of time course changes in blood glucose, insulin and lipids between high carbohydrate and high fat meals in healthy young women. Nutrition Research and Practice, 3(2), 128-133.
Sinha, S., & Haque, M. (2022). Insulin resistance is cheerfully hitched with hypertension. Life, 12(4), 564.
Short, K. R., Pratt, L. V., & Teague, A. M. (2012). The acute and residual effect of a single exercise session on meal glucose tolerance in sedentary young adults. Journal of Nutrition and Metabolism, (2012), 278678.
Son, S. M. (2012). Reactive oxygen and nitrogen species in pathogenesis of vascular complications of diabetes. Diabetes & Metabolism Journal, 36(3), 190-198.
Sorkin, J. D., Muller, D. C., Fleg, J. L., & Andres, R. (2005). The relation of fasting and 2-h postchallenge plasma glucose concentrations to mortality: data from the Baltimore Longitudinal Study of Aging with a critical review of the literature. Diabetes Care, 28(11), 2626-2632.
SPRINT Research Group. (2015). A randomized trial of intensive versus standard blood-pressure control. New England Journal of Medicine, 373(22), 2103-2116.
Stanford, K. I., & Goodyear, L. J. (2014). Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Advances in Physiology Education, 38(4), 308-314.
Steinberg, H. O., Brechtel, G., Johnson, A., Fineberg, N., & Baron, A. D. (1994). Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. The Journal of Clinical Investigation, 94(3), 1172-1179.
Stout, M. (2009). Flow‐mediated dilatation: a review of techniques and applications. Echocardiography, 26(7), 832-841.
Sugawara, J., Hayashi, K., Yokoi, T., Cortez-Cooper, M. Y., DeVan, A. E., Anton, M. A., & Tanaka, H. (2005). Brachial–ankle pulse wave velocity: an index of central arterial stiffness? Journal of Human Hypertension, 19(5), 401-406.
Sugawara, J., Komine, H., Miyazawa, T., Imai, T., & Ogoh, S. (2015). Influence of single bout of aerobic exercise on aortic pulse pressure. European Journal of Applied Physiology, 115(4), 739-746.
Sugawara, J., & Tanaka, H. (2015). Brachial-ankle pulse wave velocity: myths, misconceptions, and realities. Pulse, 3(2), 106-113.
Sun, P., Yan, H., Ranadive, S. M., Lane, A. D., Kappus, R. M., Bunsawat, K., ... & Fernhall, B. (2015). Blood pressure changes following aerobic exercise in Caucasian and Chinese descendants. International Journal of Sports Medicine, 36(3), 189-196.
Suzuki, K., Watanabe, K., Futami-Suda, S., Yano, H., Motoyama, M., Matsumura, N., ... & Oba, K. (2012). The effects of postprandial glucose and insulin levels on postprandial endothelial function in subjects with normal glucose tolerance. Cardiovascular Diabetology, 11(1), 1-9.
Tabara, Y., Saito, I., Nishida, W., Kohara, K., Sakurai, S., Kawamura, R., ... & Tanigawa, T. (2011). Relatively lower central aortic pressure in patients with impaired insulin sensitivity and resistance: the Toon Health Study. Journal of Hypertension, 29(10), 1948-1954.
Tanaka, H., Munakata, M., Kawano, Y., Ohishi, M., Shoji, T., Sugawara, J., ... & Ozawa, T. (2009). Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness. Journal of Hypertension, 27(10), 2022-2027.
Tanaka, H., & Safar, M. E. (2005). Influence of lifestyle modification on arterial stiffness and wave reflections. American Journal of Hypertension, 18(1), 137 - 144.
Thorell, A., Hirshman, M. F., Nygren, J., Jorfeldt, L., Wojtaszewski, J. F., Dufresne, S. D., ... & Goodyear, L. J. (1999). Exercise and insulin cause GLUT-4 translocation in human skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism, 277(4), E733-E741.
Tomiyama, H., Hashimoto, H., Hirayama, Y., Yambe, M., Yamada, J., Koji, Y., ... & Yamashina, A. (2006). Synergistic acceleration of arterial stiffening in the presence of raised blood pressure and raised plasma glucose. Hypertension, 47(2), 180-188.
Tousoulis, D., Kampoli, A. M., Tentolouris Nikolaos Papageorgiou, C., & Stefanadis, C. (2012). The role of nitric oxide on endothelial function. Current Vascular Pharmacology, 10(1), 4-18.
Treasure, C. B., Klein, J. L., Vita, J. A., Manoukian, S. V., Renwick, G. H., Selwyn, A. P., ... & Alexander, R. W. (1993). Hypertension and left ventricular hypertrophy are associated with impaired endothelium-mediated relaxation in human coronary resistance vessels. Circulation, 87(1), 86-93.
Tsuboi, A., Ito, C., Fujikawa, R., Yamamoto, H., & Kihara, Y. (2015). Association between the postprandial glucose levels and arterial stiffness measured according to the cardio-ankle vascular index in non-diabetic subjects. Internal Medicine, 54(16), 1961-1969.
Uysal, K. T., Wiesbrock, S. M., Marino, M. W., & Hotamisligil, G. S. (1997). Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature, 389(6651), 610-614.
Van Dijk, J. W., Venema, M., Van Mechelen, W., Stehouwer, C. D., Hartgens, F., & Van Loon, L. J. (2013). Effect of moderate-intensity exercise versus activities of daily living on 24-hour blood glucose homeostasis in male patients with type 2 diabetes. Diabetes Care, 36(11), 3448-3453.
Vanessa Fiorentino, T., Prioletta, A., Zuo, P., & Folli, F. (2013). Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Current Pharmaceutical Design, 19(32), 5695-5703.
Vlachopoulos, C., Xaplanteris, P., Aboyans, V., Brodmann, M., Cífková, R., Cosentino, F., ... & Lekakis, J. (2015). The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation: Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Atherosclerosis, 241(2), 507-532.
Vlassara, H., Fuh, H., Makita, Z., Krungkrai, S., Cerami, A., & Bucala, R. I. C. H. A. R. D. (1992). Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proceedings of the National Academy of Sciences, 89(24), 12043-12047.
Vollenweider, P., Tappy, L., Randin, D., Schneiter, P., Jequier, E., Nicod, P., & Scherrer, U. (1993). Differential effects of hyperinsulinemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans. The Journal of Clinical Investigation, 92(1), 147-154.
Waldstein, S. R., Rice, S. C., Thayer, J. F., Najjar, S. S., Scuteri, A., & Zonderman, A. B. (2008). Pulse pressure and pulse wave velocity are related to cognitive decline in the Baltimore Longitudinal Study of Aging. Hypertension, 51(1), 99-104.
Waters, R. E., Rotevatn, S., Li, P., Annex, B. H., & Yan, Z. (2004). Voluntary running induces fiber type-specific angiogenesis in mouse skeletal muscle. American Journal of Physiology-Cell Physiology, 287(5), C1342-C1348.
Watanabe, K., Oba, K., Suzuki, T., Ouchi, M., Suzuki, K., Futami‐Suda, S., ... & Nakano, H. (2011). Oral glucose loading attenuates endothelial function in normal individual. European Journal of Clinical Investigation, 41(5), 465-473.
Wang, B., Charukeshi Chandrasekera, P., & J Pippin, J. (2014). Leptin-and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Current Diabetes Reviews, 10(2), 131-145.
Weiss, E. P., Arif, H., Villareal, D. T., Marzetti, E., & Holloszy, J. O. (2008). Endothelial function after high-sugar-food ingestion improves with endurance exercise performed on the previous day. The American Journal of Clinical Nutrition, 88(1), 51-57.
Weiss, E. P., Royer, N. K., Fisher, J. S., Holloszy, J. O., & Fontana, L. (2014). Postprandial plasma incretin hormones in exercise-trained versus untrained subjects. Medicine and Science in Sports and Exercise, 46(6), 1098.
Whelton, P. K., Carey, R. M., Mancia, G., Kreutz, R., Bundy, J. D., & Williams, B. (2022). Harmonization of the American College of Cardiology/American Heart Association and European Society of Cardiology/European Society of Hypertension Blood Pressure/Hypertension Guidelines: Comparisons, Reflections, and Recommendations. European Heart Journal, 43(35), 3302-3311.
Whelton, S., Chin, A., Xin, X., & He, J. (2002). Effect of Aerobic Exercise on Blood Pressure: A Meta-Analysis of Randomized, Controlled Trials. Annals of Internal Medicine, 136(7), 493-503.
Wohlfahrt, P., Krajčoviechová, A., Seidlerová, J., Galovcová, M., Bruthans, J., Filipovský, J., ... & Cífková, R. (2013). Lower-extremity arterial stiffness vs. aortic stiffness in the general population. Hypertension Research, 36(8), 718-724.
Wojtaszewski, J. F., Nielsen, J. N., & Richter, E. A. (2002). Invited review: effect of acute exercise on insulin signaling and action in humans. Journal of Applied Physiology, 93(1), 384-392.
World Health Organization. (2015). Guideline: sugars intake for adults and children. World Health Organization. Available at:https://www.who.int/nutrition/publications/guidelines/en/
Yamagishi, S. I., Yonekura, H., Yamamoto, Y., Katsuno, K., Sato, F., Mita, I., ... & Yamamoto, H. (1997). Advanced glycation end products-driven angiogenesis in vitro: induction of the growth and tube formation of human microvascular endothelial cells through autocrine vascular endothelial growth factor. Journal of Biological Chemistry, 272(13), 8723-8730.
Yamashina, A., Tomiyama, H., Arai, T., Hirose, K. I., Koji, Y., Hirayama, Y., ... & Hori, S. (2003). Brachial-ankle pulse wave velocity as a marker of atherosclerotic vascular damage and cardiovascular risk. Hypertension Research, 26(8), 615-622.
Yki-Järvinen, H., Helve, E., & Koivisto, V. A. (1987). Hyperglycemia decreases glucose uptake in type I diabetes. Diabetes, 36(8), 892-896.
Young, B. E., Holwerda, S. W., Vranish, J. R., Keller, D. M., & Fadel, P. J. (2019). Sympathetic transduction in type 2 diabetes mellitus: impact of statin therapy. Hypertension, 74(1), 201-207.
Young, B. E., Padilla, J., Shoemaker, J. K., Curry, T. B., Fadel, P. J., & Limberg, J. K. (2023). Sympathetic transduction to blood pressure during euglycemic-hyperinsulinemia in young healthy adults: role of burst amplitude. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 324(4), R536-R546.
Yu, H. Y., Inoguchi, T., Kakimoto, M., Nakashima, N., Imamura, M., Hashimoto, T., ... & Nawata, H. (2001). Saturated non-esterified fatty acids stimulate de novo diacylglycerol synthesis and protein kinase c activity in cultured aortic smooth muscle cells. Diabetologia, 44(5), 614-620.
Zafeiridis, A. (2014). Mechanisms and exercise characteristics influencing postexercise hypotension. British Journal of Medicine and Medical Research, 4(36), 5699-5714.
Zhu, W., Zhong, C., Yu, Y., & Li, K. (2007). Acute effects of hyperglycaemia with and without exercise on endothelial function in healthy young men. European Journal of Applied Physiology, 99(6), 585-591.
Zhu, W., Zeng, J., Yin, J., Zhang, F., Wu, H., Yan, S., & Wang, S. (2010). Both flow-mediated vasodilation procedures and acute exercise improve endothelial function in obese young men. European Journal of Applied Physiology, 108(4), 727-732.