研究生: |
蔡鴻鵬 |
---|---|
論文名稱: |
CMIP-5海氣模式與大氣模式模擬夏季季內振盪的評估 Analysis of the summer ISO simulation in CMIP-5 AGCMs and CGCMs |
指導教授: |
鄒治華
Tsou, Chih-Hua |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 季內振盪 、MJO 、CMIP-5 、AGCM 、CGCM |
論文種類: | 學術論文 |
相關次數: | 點閱:219 下載:21 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
夏季季內振盪的移動與發展和夏季季風的肇始與中斷息息相關,同時也對颱風的生成及路徑有很大影響。因此,能否掌握季內振盪的模擬將直接的影響模式預報準確度。本研究目的在於探討耦合模式與解析度對模式模擬夏季季內振盪能力的影響。選用CMIP-5兼具大氣模式AGCM與海氣耦合模式CGCM的模擬做比較,藉此分析AGCM與CGCM對夏季季內振盪(ISO)的模擬能力以及差異。選用的7個模式及觀測資料時間皆為1985~2005年,唯GPCP觀測降水時間較短1997~2008。本研究使用Daubechies(1998)小波分析方法來濾波,並使用空間相關係數以及均方根誤差來評估模式模擬的優劣。
本研究發現,CMIP-5中、高解析度模式在ISO模擬已較過去CMIP-3資料進步,能模擬出較強的ISO訊號以及較佳的空間位置。低解析度的模式則仍然低估ISO訊號。系集平均結果則優於單一模式,能有最佳的表現。
在東、西風相位及EOF-1的模擬中,大多數模式都有不錯的表現,特別是風場模擬優於降水及渦度,系集平均同樣有最佳的模擬結果。所有模式皆能模擬出渦度場位於降水場西北方的空間結構,有利於對流向西北方發展,提供模式訊號北移的基本條件。
中、高解析度CGCM能改善AGCM訊號高估以及西北太平洋過於向東延伸的問題。反之,低解析度模式則低估訊號且空間模擬不佳。AGCM的模擬無法掌握北傳特性,中、高解析度CGCM表現則較佳,較多模式能掌握北傳訊號以及40天的波動週期。
本研究發現,耦合模式CGCM模擬季內振盪表現未必較大氣模式AGCM好。解析度高於2˚× 2˚的中、高解析度模式,加入耦合系統才有明顯的改善,解析度低於2˚× 2˚的模式則否。模式解析度必須高於一定水平之上,此時加入海氣耦合系統,才能夠改善季內盪的模擬。
鄒治華、柯文雄、張卜仁,2000:利用Wavelet分析南海地區季內振盪與東亞夏季季風之研究,大氣科學,28,27-46。
Chen, T.-C., and J.-M. Chen, 1995: An observational study of the South China Sea monsoon during the 1979 summer: Onset and life cycle. Mon. Wea. Rev., 123, 2295-2318.
Chan, J. C. L., 2000: Tropical cyclone activity over the Western North Pacific Asso-ciated with La Nina event. J. Climate., 13, 2960-2972
Daubechies,I.,1998:Orthonormal bases of compactly supported wavelets, Com-mun.Pure Appl.Math.,41,909-996.
Elsberry, R.L., 2004: Monsoon-related tropical cyclones in East Asia. In ‘East Asian Monsoon’, World Scientific Series on Meteorology of East Asia Vol. 2, Ed. C.-P. Chang, World Scientific, Singapore, 463–498.
Fu, X. and B. Wang,2004:Differences of boreal summer intraseasonal oscillations simulated in an atmosphere–ocean coupled model and an atmosphere-only model, J. Climate.,17,1263–1271.
——, ——, and Tim Li,2002:Impacts of air–sea coupling on the simulation of mean asian summer monsoon in the ECHAM4 model, Mon. Wea. Rev.,130,2889 2904.
Gates, W. L., 1992. AMIP: The atmospheric intercomparison project. Bull. Am. Met. Soc., 73, 1962±1970.
Gill, A.,1980:Some simple solution for heat-induced tropical circulation,Quart. J. Roy. Meteor. Soc.,106,447-462.
Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the general circulation. Meteoralogy over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155-218.
Hayashi, Y., and D. G. Golder, 1986: Tropical intraseasonal oscillations appearing in a GFDL general circulation model and FGGE data. Part I: Phase propagation. J. Atmos. Sci., 43, 3058–3067.
——, and A. Sumi, 1986: The 30–40 day oscillation simulated in an “aquaplanet” model. J. Meteor. Soc. Japan, 64, 451–466.
Harr, P. A., and R. L. Elsberry, 1995: Large-Scale Circulation Variability over the Tropical Western North Pacific. Part I: Spatial Patterns and Tropical Cyclone Characteristics. Mon. Wea. Rev., 123, 1225–1246.
Holland, G. J., 1995: Scale interaction in the western Pacific monsoon. Meteor. Atmos. Phys., 56, 52–79.
Hsu, H. H. and C.–H. Weng, 2001:Northwestward propagation of the intraseasonal oscillation in the western north Pacific during the boreal summer: Structure and mechanism, J. Climate.,14,3834-3850.
Hung, Meng-Pai, Jia-Lin Lin, Wanqiu Wang, Daehyun Kim, Toshiaki Shinoda, Scott J. Weaver, 2013: MJO and Convectively Coupled Equatorial Waves Simulated by CMIP5 Climate Models. J. Climate, 26, 6185–6214.
Inness, P. M., and J. M. Slingo, 2003: Simulation of the Madden– Julian oscillation in a coupled general circulation model. Part I: Comparison with observations and an atmosphere-only GCM. J. Climate, 16, 345–364.
——, ——, S. J. Woolnough, R. B. Neale, and V. D. Pope, 2001: Organization of tropical convection in a GCM with varying vertical resolution; implications for the simulation of the Madden–Julian oscillation. Climate Dyn., 17, 777–793.
Jia, X., C. Li, J. Ling, and C. Zhang, 2008: Impacts of a GCM’s resolution on MJO simulation. Adv. Atmos. Sci., 25, 139–156.
Kang, I. -S., C. –H. Ho, Y. –K. Lim, and K.-M. Lau,1999:Principal modes of clima-tological seasonal and intraseasonal variations of the Asian summer mon-soon, Mon. Wea. Rev.,127,322–340.
Kawamura, R., T. Murakami, and B. Wang, 1996: Tropical and midlatitude 45-day perturbations over the western Pacific during the northern summer. J. Meteor. Soc. Japan, 74, 867–890.
Kim, D., and coauthors, 2009: Application of MJO Simulation Diagnostics to Climate Models, J. Climate, 22, 6413–6436.
——, D., A. H. Sobel, D. Frierson, E. Maloney, and I. S. Kang, 2011a: A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J. Climate, 24, 5506-5520.
——., and Prince Xavier, Eric Maloney, 2014:Process-oriented MJO Simulation Di-agnostic:Moisture Sensitivity of Simulated Convection
Knutson, T. R., and K. M. Weickmann, 1987: 30–60-day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 1407–1436.
Krishnamurti, T. N., and D. Subrahmanyam, 1982: The 30–50 day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 2088–2095.
Lau, K. M., and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 1354–1367.
Lee, M. I., I.-S. Kang, J. K. Kim, and B. E. Mapes, 2001: Influence of cloud–radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. J. Geophys. Res., 106, 14 219–14 233.
——, ——, ——,and ——,. Mapes, 2003: Impacts of cumulus convection parame-terization on aqua-planet AGCM simulations of tropical intraseasonal variability, J. Meteor. Soc. Japan, 81, 963–992.
Li, Richard C. Y., Wen Zhou, 2013: Modulation of Western North Pacific Tropical Cyclone Activity by the ISO. Part II: Tracks and Landfalls. J. Climate, 26, 2919–2930.
Lin, and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 2665–2690.
Liang, X. Z., A. N. Samel, and W. -C. Wang,2001:China's rainfall interannual pre-dictability: Dependence on the annual cycle and surface anomalies, J. Cli-mate.,15,2555–2561.
Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscil-lation. J. Meteor. Soc. Japan, 72, 401–412.
Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.
——, and ——, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123.
Mak,M.,1995:Orthogonal wavelet analysis:Interannual variability in the sea surface temperature, Bull. Amer. Meteor. Soc.,76,2179-2186.
Maloney, and D. L. Hartmann, 2000a: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian oscillation. Science, 287, 2002–2004.
——, and ——, 2000b: Modulation of eastern North Pacific hurricanes by the Mad-den–Julian oscillation. J. Climate, 13, 1451– 1460.
Marshall, A. G., O. Alves, and H. H. Hendon, 2008: An enhanced moisture conver-gence–evaporation feedback mechanism for MJO air–sea interaction. J. Atmos. Sci., 65, 970–986.
Nakzawa, T., 1992:Seasonal Phase lock of intraseasonal variation during the Asian summer monsoon, J. Meteor. Soc. Japan, 70, 597-611.
Newman, Matthew, Prashant D. Sardeshmukh , 2009: How Important Is Air–Sea Coupling in ENSO and MJO Evolution?. J. Climate, 22, 2958–2977.
Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric gen-eral circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12, 325–357.
Song. F. and Zhou. T., 2013: Interannual Variability of East Asian Summer Monsoon Simulated by CMIP3 and CMIP5 AGCMs: Skill Dependence on Indian Ocean Western Pacific Anticyclone Teleconnection. J. Climate, 27, 1679- 1697
Sperber, S. Gualdi, S. Legutke, and V. Gayler, 2005: The Madden– Julian oscillation inECHAM4coupled and uncoupled general circulation models. Climate Dyn., 25, 117–140.
Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433–448.
Torrence,C. and G.P. Compo, 1998: A practical guide to wavelet analysis, Bull.Amer.Meteor.Soc.,79,61-78.
Tsou, C.-H., P.-C. Hsu, W.-S. Kau, and H.-H. Hsu, 2005: Northward and Northwest-ward Propagation of 30-60 Day Oscillations in the Tropical and Extratropical Western North Pacific. J. Meteor. Soc. Japan., 83, 711-726. (SCI)
Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies. Meteor. Atmos. Phys., 44, 43–61.
——., and X. Xu,1997:Northern hemisphere summer monsoon singularities and climatological intraseasonal oscillation, J. Climate.,10,1071–1085.
Wang, W. Q., and M. E. Schlesinger, 1999: The dependence on convection parame-terization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12, 1423–1457.
Weickmann, G. Kiladis, and P. Sardeshmukh, 1997: The dynamics of intraseasonal atmospheric angular momentum oscillations. J. Atmos. Sci., 54, 1445–1461.
Weng, H., and K. -M. Lau,1994:Wavelets period doubling and time-frequency loca-tion with application to organization of connection over the tropical weatern Pa-cific, Mon. Wea. Rev.,121,2523-2541.
Wheeler, and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–399.
——., M, and J. L. McBride, 2005: Australian–Indonesian monsoon. Intraseasonal Variability in the Atmosphere–Ocean Climate System,W.K.M. Lau andD.E.Waliser,Eds., Springer, 125–173.
Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J.Meteor. Soc. Japan, 57, 227–242.
——., 1981: Structure of an Indian summer monsoon system with around 40-day pe-riod. J. Meteor. Soc. Japan, 59, 336–354.