研究生: |
林清炎 Ching-Yan Lin |
---|---|
論文名稱: |
變異型態的變分不等式 Variant Problems On Variational Inequalilties |
指導教授: |
朱亮儒
Chu, Liang-Ju |
學位類別: |
博士 Doctor |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 英文 |
論文頁數: | 91 |
中文關鍵詞: | 一致點定理,最大最小不等式, 、固定點定理. |
英文關鍵詞: | Coincidence theorem, minimax ine-, quality, Nikaido's coincidence theor-, em,Gorniewicz fixed point theorem,, nearly convex, G-space , Bregman -, type proximal point algorithm. |
論文種類: | 學術論文 |
相關次數: | 點閱:267 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無
In this paper, we establish existence theory and algorithms on
variational problems, by which we mean here problems of fixed
points, coincidences, minimax inequalities, generalized variat-
ional inequalities, generalized quasi-variational inequalities.
Under weakened assumptions on the operators and constraint reg-
ions, we improve and generalize recently many well-known exist-
ence theorems. More specifically, we establish two versions of
Nikaidos coincidence theorem from different approaches, and use
these to show several existence theorems for the generalized v-ariational inequalities, in the case that C is noncompact and
nonconvex, but merely a nearly convex set. Also, we introduce
a new Bregman-type proximal point algorithm for solving variat-
ional inequalitiy problems in a reflexive Banach space, and pr-
ovide a continuation method to solve nonsmooth convex programm-
ing.
[1] Ansari, Q.H., Lin, Y.C. & Yao, J.C. (2000). General KKM theorem with applications to minimax and variational inequalities, J. Math. Anal. Appl.
104, 41-57.
[2] Asplund, E. (1967). Averaged norms, Israel J. Math. 5, 227-
233.
[3] Aubin, J.-P. & Cellina, A. (1994). "Differential Inclusion'', Springer-Verlag,
Berlin, Heidelberg.
[4] Aubin, J.-P. & Ekeland, I. (1984). Applied nonlinear analysis, John Wiley &
Sons, New York.
[5] Begle, E. G. (1950). A fixed point theorem, Ann. of Math. 51, 544-550.
[6] Brezis, H. (1973). Operateurs maximaux monotones et semi-g
roupes de con-tractions dans les espaces de Hilbert , North-Holland, Amsterdan.
[7] Brezis, H. & Haraux, A. (1976). Image d'une somme d' operateurs monotones et applications, Israel Journal of Mathematics, 23 (2), 165-185.
[8] Browder, F.E. (1984). Coincidence theorems, minimax theorems, and varia-tional inequalities, Contemp. Math. 26, 67-80.
[9] Burachik, R.S. (1995). Generalized proximal point methods for the variationalinequality problem, Ph.D. thesis, Instituto de Matemtica Pura e Aplicada, Rio de Janeiro.
[10] Burachik, R.S., Iusem, A.N. & Svaiter, B.F. (1997). Enlargement of monotone operators with applications to variational inequalities, Set-Valued Analysis 5, 159-180.
[11] Burachik, R.S. & Iusem, A.N. (1998). A generalized proximal point algo-rithm for the variational inequality problem in a Hilbert space, SIAM J. Optim. 8, 197-216.
[12] Censor, Y., Iusem, A.N. & Zenios, S.A. (1998). An interior point method with Bregman functions for the variational inequality problem with paramontone operators, Math. Programming, to appear.
[13] Chang, S.S., Lee, B.S., Wu, X., Cho, Y.J. & Lee, G.M. (1996). On the generelized quasi赳ariational inequality problems, J. Math. Anal. Appl. 203, 686-711.
[14] Chang, S. S. & Zhang, Y. (1991) Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159, 208-223.
[15] Chang, T.H. & Yen, C.L. (1996). KKM properties and fixed point theorem, J. Math. Anal. Appl. 203, 224-235.
[16] Chen, G. & Teboulle, M. (1993). Convergence analysis of a proximal-ike minimization algorithm using Bregman functions , SIAM J. Optim. 3, 538-543.
[17] Chu, L.J. (1999). Unified approaches to nonlinear optimization, Optimization 46, 25-60.
[18] Chu, L.J. (1997). On Fan's minimax inequality , J. Math. Anal. Appl. 201, 103-113.
[19] Chu, L.J. (1996). On the sum of monotone operators, Michigan Math. J. 43(2), 273-291.
[20] Chu, L.J. (1999). On the continuity of trajectories for nonlinear monotone complementarity problems, Scientiae Mathematicae (SCM), Japanese Associa-tion of Mathematical Sciences, Vol 1, No. 3, 1-13.
[21] Chu, L.J. & Lin, C.Y. (2002). A general coincidence theorem in G-paces, to appear in Journal of Optimization.
[22] Chu, L.J., Lin, C.Y. &Wu, T.Y. (2002). Generalized vector quasi-variational inequalities on nonconvex constraint regions, submitted to J. Math. Anal. Appl.
[23] Clarke, F.H. (1989). Optimization and nonsmooth analysis, Centre de Recheres Mathmatiques, Universit de Montral, Canada.
[24] Ding, X.P., Kim, W.K. & Tan, K.K. (1992). A selection theorem and its applications, Bull. Austral. Math. Soc. 46, 205-212.
[25] Ding, X.P. & Tarafdar, E. (1994). Some coincidence theorems and applications, Bull. Austral. Math. Soc. 50, 73-80.
[26] Fan, K. (1952). Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci., U.S.A. 38, 121-126.
[27] Fan, K. (1961). A generalization of Tychnoff's fixed point theorem , Math. Ann. 142, 305-310.
[28] Fang, S.C. & Peterson, E.L. (1982). Generalized variational inequalities, J. Opti. Theory and Appl. 38(3), 363-
383.
[29] Gorniewicz, L. (1975). A Lefschetz-type fixed point theorem, Fund. Math.,88, 103-115.
[30] Granas, A. & Liu, F.-C. (1986). Coincidences for set-valued maps and minimax inequalities, J. Math. Pures et Appl. 65, 119-148.
[31] Halkin, H. (1967). Finite convexity in infinite-dimensional spaces, Proc. of the Colloquium on Convexity, Copenhagen (1965), W. Fenchel(ed.), Copenhagen, 126-131.
[32] Kiwiel, K.C. (1997). Proximal minimization methods with generalized Breg-man functions, SIAM J. Control and Optim. 35, 1142-1168.
[33] Knaster, B. & Kuratowski, C. & Mazurkiewicz, S. (1929). Ein beweis des fixpunktsatzes fur n-dimensionale simplexe, Fund. Math. 14, 132-137.
[34] Kojima, M., Mizuno, S. & Yoshise, A. (1989). A polynomial-time algorithm for a class of linear complementarity problems, Math. Program. 44, 1-27.
[35] Lin, L.J. & Yu, Z.T. (1999). Fixed points theorems of KKM-type maps, Nonlinear Analysis 38, 265-275.
item [36] Luque, F.J. (1984). Asymptotic convergence analysis of the proximal point algorithm, SIAM J. Control and Optim. 22, 277-293.
[37] Massey, W.S. (1980). ``Singular Homology Theory'' , Springerm-Verlag, New York.
[38] Moreau, J.J. (1965). Proximite et dualite dans un espace Hilbertien, Bull. Soc. Math. France 93, 273-299.
[39] Massey, W.S. (1980). ``Singular Homology Theory'' , Springer-Verlag, New York.
[40] McLinden, L. (1980). The complementarity problem for maximal monotone multifunctions, in: R.W. Cottle, F. Giannessi & J.L. Lions, eds., Variational Inequalities and Complementarity Problems, John Wiley & Sons, New York, 251-270.
[41] Minty, G.J. (1961). On the maximal domain of a monotone function, Michigan Math. J. 8, 135-137.
[42] Monteiro, R.C. & Adler, I. (1989). Interior path following primal-dual algorithms, Part I : Linear programming , Math. Program. 44, 27-42.
[43] Monteiro, R.C. & Adler, I. (1989). Interior path following primal-dual algorithms, Part II : Convex quadratic programming , Math. Program. 44, 43-66.
[44] Nikaid, H. (1959). Coincidence and some systems of inequalities, J. Math. Soc., Japan 11, 354-373.
[45] Park, S. (1993). Coincidences of composites of admissible u.s.c. maps and applications, C.R. Math. Acad. Sci. Canada 15, 125-130.
[46] Park, S. (1994). Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31, 493-519.
[47] Park, S. & Kim, H. (1997) Foundations of the KKM theory on generalized convex spaces, J. Math. Anal. Appl. 209 , 551-571.
[48] Rockafellar, R.T. (1970). On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149, 75-86.
[49] Rockafellar, R.T. (1976). Monotone operators and the proximal point algo-rithm, SIAM J. Control and Optim. 14, 877-898.
[50] Rockafellar, R.T. (1969). Locally boundedness of nonlinear monotone opera-tors, Michigan Math. J. 16, 397-407.
[51] Rockafellar, R.T. (1970). On the virtual convexity of the domain and range of a nonlinear maximal monotone operator , Math. Ann. 185, 81-90.
[52] Rockafellar, R.T. (1970). Convex Analysis, Princeton U. Press, Princeton, New Jersey.
[53] Saigal, R. (1976). Extension of the generalized complemetarity problem, Math. of Oper. Res. 1 (3), 260-266.
[54] Seesa, S. (1988). Some remarks and applications of an extensions of a lemma of a Ky Fan , , Comment. Math. Univ. Carolin. 29, 567-575.
[55] Schrijver, A. (1986). Theory of Linear and Integer Programming , John Wiley & Sons, New York.
[56] Tarafdar, E. (1992). Fixed point theorems in H貞paces and equilibrium points of abstract economies, J. Austral. Math. Soc. Ser. A 53, 252-260.
[57] Tian, G.Q. (1992). Generealization of Fkkm theorem and the Ky Fan min-imax inequality with applications to maximal elements, price equilibrium and complementarity , J. Math. Anal. Appl. 170, 457-471.
[58] Troyanski, S. (1971). On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces, Studia Math. 37, 173-180.
[59] Wu, X. & Shen, S. (1996). A futher generalization of Yannelis-Prabhakar's continuous selection theorem and its applications , J. Math. Anal. Appl. 197, 61-74.
[60] Yao, J.C. (1993). On the generalized variational inequality , J. Math. Anal. Appl. 174, 550-555.