簡易檢索 / 詳目顯示

研究生: 黃麒彰
Huang, Ci-Jhang
論文名稱: 非常規Diels-Alder反應立體選擇性及其機制之理論計算化學研究
A Computational Study on the Anomalous Exo Selectivity in Diels-Alder Reactions
指導教授: 李祐慈
Li, Yu-Tzu
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 97
中文關鍵詞: Diels-Alder反應二級軌域作用扭曲/作用能分析
英文關鍵詞: Diels-Alder reactions, Secondary orbital interactions, Distortion/Interaction analysis
DOI URL: https://doi.org/10.6345/NTNU202203581
論文種類: 學術論文
相關次數: 點閱:115下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Diels-Alder反應是公認有機合成建立六員環一強大工具,能夠在一步驟反應中最多產生四個相鄰位置的立體中心,因此在實驗合成被運用的情形顯而易見,尤其常見於建立複雜的生化分子以及自然產物之合成。在過去Diels-Alder加成反應其立體選擇性的預期往往因著endo途徑diene與dienophile兩分子間存在著二級軌域作用(secondary orbital interactions) 而取得endo選擇性(Alder’s endo rule)。具有exo選擇性的Diels-Alder反應特殊例子亦存在,但大多數必須具有環狀結構並且要在路易斯酸等催化條件下方可生成。最新的研究顯示,簡單的dienes與dienophiles反應系統亦能在非催化的熱反應條件下生成exo選擇性的產物,但相關理論細節尚待釐清。
    因此,本篇論文旨在透過理論計算化學研究、探討Diels-Alder反應在一系列dienes、dienophiles於不同拉電子基條件下endo以及exo立體選擇性變化,詳細的探討Diels-Alder反應其取代基效應、過渡狀態結構主導立體選擇性之關鍵因素,為這類特別之非常規的exo選擇性提出反應條件及反應機制。
    透過理論計算化學的探究,我們證實了簡單(非環狀)、只含部份取代的dienes與dienophiles反應系統確實可在熱反應條件下生成exo選擇性產物。其原理可大致說明如下:藉由diene之C2位置大基團以及diene之C4位置取代基的修飾,可以增加dienophile拉電子基與diene之取代基在endo途徑的立體阻礙使其不利生成endo加成物。除此之外,dienophile之Cβ位置使用具π系統的取代基以增加exo過渡狀態兩分子間的交互作用同樣可以有效提升exo選擇性。
    期望藉由本篇論文之成果,使實驗合成不僅可透過調控立體效應與穩定效應自由地獲得專一選擇性,讓這系列起始物結構與反應條件皆相對單純之Diels-Alder加成反應在實驗設計上有更多的發展與應用潛力。

    The Diels-Alder reaction is a powerful tool for the construction of six-membered rings with up to four stereogenic centers in a single step makes this reaction highly attractive, especially in constructing complex biologically active molecules and natural products. Traditionally, the selective predictions of the products rely heavily in consideration of the secondary orbital interactions that stabilize the endo pathway (Alder's endo rule). Exo selective Diels-Alder reactions in special cases have been reported, but are mostly limited to catalytic conditions involving reactants and/or Lewis acids with bulky or cyclic structures.
    We investigate theoretically the endo and exo reaction pathways for the Diels-Alder cycloadditions between various dienes and dienophiles with different substituents and electron-withdrawing groups. In this study, we investigate in detail the substitutional group effect on the stereoselectivity of Diels-Alder reactions, and propose a mechanism for the anomalous exo selectivity for these special cases. We propose that the stereoselectivity is derived from the competition between different interaction forces in two pathways. Specifically, the endo pathway is disfavored by the streic repulsion between the electron-withdrawing group of the dienophile and the C2,C4-substituents of the diene. Moreover, the secondary orbital interactions may also be exploited in a converse manner to enhance the exo selectivity by introducing π-conjugation at the trans-Cβ of the dienophile. We expect that the results proposed by this study will provide valuable guidelines for organic synthesists to utilize more versatile strategies in accordance with the principles of green chemistry.

    中文摘要 I 英文摘要 II 總目錄 III 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1 Diels-Alder Reaction 1 1-2 Reaction mechanism反應機制 1 1-3 Diels-Alder反應的立體化學 2 1-4 Origin of the “Endo rule” 5 1-5 Endo/Exo立體選擇性 6 1-6 研究目標 7 第二章 研究系統介紹與相關文獻探討 8 2-1 文獻紀錄的研究分析、預測及討論10c 8 2-2 末端取代、修飾dienes與dienophiles的exo選擇性反應10c 10 2-3 C2-diene bulky group取代基效應之文獻紀錄11 11 2-4 實驗觀察之結果與發現 14 2-5 研究方向:熱力學與動力學之探討 15 2-6 動力學:過渡狀態與活化能 17 第三章 理論計算原理與方法 19 3-1 前言 19 3-2 密度泛函理論 (Density Functional Theory)13 19 3-2-1 Hybrid function: B3LYP and M06-2X 21 3-2-2 基底函數 (Basis set)19 22 3-3 計算過程 24 3-3-1 單點能量 (Single potint)21 24 3-3-2 幾何優化 (Geometry optimization)21 24 3-3-3 溶劑模型 (Solvation Model)21-22 25 3-3-4 過渡態理論 (Transition State Theory) 27 3-3-5 Exo/Endo選擇性表示方法:kexo vs. kendo 28 3-3-6 Activation Strain Model: distortion energy and interaction energy 28 3-4 計算參數 30 第四章 實驗與理論計算結果之比較 31 4-1 研究系統 31 4-2 拉電子基系統與立體選擇性 31 4-2-1 酯基Ester 32 4-2-2 氰基Nitrile 34 4-2-3 醛基Aldehyde 35 4-2-4 酮基Ketone 36 4-2-5 硝基Nitro 39 4-3 Activation Strain Model:實驗系統之理論計算能量分析 40 4-4 實驗結果與理論計算結果之比較 43 4-5 立體選擇性:實驗及理論計算結果與K. N. Houk觀點之比較 46 第五章 Diels-Alder反應取代基效應與 立體選擇性關係 48 5-1 前言 48 5-2 Diene的取代基效應 48 5-2-1 C2-Diene bulky group與立體選擇性 48 5-2-2 C4-Diene取代基與立體選擇性 51 5-2-3 C2,C4-Diene取代、修飾之立體選擇性綜合成果 54 5-3 Dienophile的取代基效應 54 5-3-1 Dienophile之EWG修飾與立體選擇性 55 5-3-2 Cβ-Dienophile取代修飾與立體選擇性 57 5-3-3 Exo選擇性機制:trans- Cβ secondary orbital interactions 59 5-4 取代基修飾與立體選擇性表現 63 第六章 Diels-Alder反應立體選擇機制與結構分析 65 6-1 前言 65 6-2 Diels-Alder反應asynchronous性質與立體選擇性 65 6-2-1 Forming bond length與立體選擇性 66 6-2-2 Planarity deviation與立體選擇性 70 6-2-3 Twist model與立體選擇性 71 6-3 拉電子基:硝基之立體選擇性與立體結構分析 71 6-4 Diels-Alder反應立體選擇性與立體結構 73 結論 75 參考文獻 77 附錄Appendix 82

    1. Diels, O.; Alder, K., Synthesen in der hydroaromatischen Reihe. Justus Liebigs Annalen der Chemie 1928, 460 (1), 98.
    2. (a) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G., The Diels–Alder Reaction in Total Synthesis. Angewandte Chemie International Edition 2002, 41 (10), 1668; (b) Kloetzel, M. C., The Diels-Alder Reaction with Maleic Anhydride. In Organic Reactions, John Wiley & Sons, Inc.: 2004; (c) Holmes, H. L., The Diels-Alder Reaction Ethylenic and Acetylenic Dienophiles. In Organic Reactions, John Wiley & Sons, Inc.: 2004; (d) Jones, G. O.; Guner, V. A.; Houk, K. N., Diels−Alder Reactions of Cyclopentadiene and 9,10-Dimethylanthracene with Cyanoalkenes:  The Performance of Density Functional Theory and Hartree−Fock Calculations for the Prediction of Substituent Effects. The Journal of Physical Chemistry A 2006, 110 (4), 1216.
    3. (a) Houk, K. N.; Lin, Y. T.; Brown, F. K., Evidence for the concerted mechanism of the Diels-Alder reaction of butadiene with ethylene. Journal of the American Chemical Society 1986, 108 (3), 554; (b) Goldstein, E.; Beno, B.; Houk, K. N., Density Functional Theory Prediction of the Relative Energies and Isotope Effects for the Concerted and Stepwise Mechanisms of the Diels−Alder Reaction of Butadiene and Ethylene. Journal of the American Chemical Society 1996, 118 (25), 6036.
    4. Fukui, K.; Yonezawa, T.; Shingu, H., A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. The Journal of Chemical Physics 1952, 20 (4), 722.
    5. Geerlings, P.; Ayers, P. W.; Toro-Labbé, A.; Chattaraj, P. K.; De Proft, F., The Woodward–Hoffmann Rules Reinterpreted by Conceptual Density Functional Theory. Accounts of Chemical Research 2012, 45 (5), 683.
    6. (a) Carey, F. A., Sundberg, Richard J., Advanced Organic Chemistry: Part A: Structure and Mechanisms (5th ed.). New York: Springer, 2007; (b) Bronner, S. M.; Mackey, J. L.; Houk, K. N.; Garg, N. K., Steric effects compete with aryne distortion to control regioselectivities of nucleophilic additions to 3-silylarynes. J Am Chem Soc 2012, 134 (34), 13966.
    7. (a) Tian, J.; Houk, K. N.; Klärner, F. G., Substituent Effect on Stereospecificity and Energy of Concert of the Retro-Diels−Alder Reaction of Isopropylidenenorbornene. The Journal of Physical Chemistry A 1998, 102 (39), 7662; (b) Lam, Y. H.; Bobbio, C.; Cooper, I. R.; Gouverneur, V., A concise synthesis of enantioenriched fluorinated carbocycles. Angew Chem Int Ed Engl 2007, 46 (27), 5106; (c) Iafe, R. G.; Houk, K. N., Intramolecular Hetero-Diels−Alder Reactions of Imine and Iminium Dienophiles:  Quantum Mechanical Exploration of Mechanisms and Stereoselectivities. The Journal of Organic Chemistry 2008, 73 (7), 2679.
    8. (a) Stephenson, L. M.; Smith, D. E.; Current, S. P., Endo preference in the Diels-Alder cycloaddition of butadiene and maleic anhydride. The Journal of Organic Chemistry 1982, 47 (21), 4170; (b) Fernandez, I.; Bickelhaupt, F. M., Origin of the "endo rule" in Diels-Alder reactions. J Comput Chem 2014, 35 (5), 371; (c) Birney, D. M.; Houk, K. N., Transition structures of the Lewis acid-catalyzed Diels-Alder reaction of butadiene with acrolein. The origins of selectivity. Journal of the American Chemical Society 1990, 112 (11), 4127.
    9. (a) Kobuke, Y.; Sugimoto, T.; Furukawa, J.; Fueno, T., Role of attractive interactions in endo-exo stereoselectivities of Diels-Alder reactions. Journal of the American Chemical Society 1972, 94 (10), 3633; (b) Carey, F. A., Sundberg, Richard J., Advanced Organic Chemistry: Part B: Reactions and Synthesis (5th ed.). New York: Springer, 2007.
    10. (a) Walter, C. J.; Anderson, H. L.; Sanders, J. K. M., exo-Selective acceleration of an intermolecular Diels-Alder reaction by a trimeric porphyrin host. Journal of the Chemical Society, Chemical Communications 1993, (5), 458; (b) Node, M.; Nishide, K.; Imazato, H.; Kurosaki, R.; Inoue, T.; Ikariya, T., Exo selective Diels-Alder reaction of nitroolefins with Danishefsky's diene. Chemical Communications 1996, (22), 2559; (c) Lam, Y.-h.; Cheong, P. H.-Y.; Blasco Mata, J. M.; Stanway, S. J.; Gouverneur, V.; Houk, K. N., Diels−Alder Exo Selectivity in Terminal-Substituted Dienes and Dienophiles: Experimental Discoveries and Computational Explanations. Journal of the American Chemical Society 2009, 131 (5), 1947.
    11. Liu, Z.; Lin, X.; Yang, N.; Su, Z.; Hu, C.; Xiao, P.; He, Y.; Song, Z., Unique Steric Effect of Geminal Bis(silane) To Control the High Exo-selectivity in Intermolecular Diels-Alder Reaction. J Am Chem Soc 2016, 138 (6), 1877.
    12. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Gaussian, Inc.: Wallingford, CT, USA, 2009.
    13. Cramer, C. J., Essentials of Computational Chemistry: Theories and Models, 2nd Edition. WILEY: Minneapolis, 2004.
    14. Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical Review 1964, 136 (3B), B864.
    15. Kohn, W.; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 1965, 140 (4A), A1133.
    16. (a) Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 1993, 98 (7), 5648; (b) Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 1988, 37 (2), 785.
    17. Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts 2007, 120 (1-3), 215.
    18. (a) Linder, M.; Brinck, T., Stepwise Diels-Alder: more than just an oddity? A computational mechanistic study. J Org Chem 2012, 77 (15), 6563; (b) Walker, M.; Harvey, A. J.; Sen, A.; Dessent, C. E., Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J Phys Chem A 2013, 117 (47), 12590; (c) Huang, G. T.; Lankau, T.; Yu, C. H., A computational study: reactivity difference between phosphine- and amine-catalyzed cycloadditions of allenoates and enones. J Org Chem 2014, 79 (4), 1700; (d) Cheng, G. J.; Zhang, X.; Chung, L. W.; Xu, L.; Wu, Y. D., Computational organic chemistry: bridging theory and experiment in establishing the mechanisms of chemical reactions. J Am Chem Soc 2015, 137 (5), 1706.
    19. James B Foresman, A. F., Exploring Chemistry With Electronic Structure Methods: A Guide to Using Gaussian. Gaussian, Inc.: Pittsburgh, PA.
    20. Van Lenthe, E.; Baerends, E. J., Optimized Slater-type basis sets for the elements 1–118. Journal of Computational Chemistry 2003, 24 (9), 1142.
    21. (a) Wadt, W. R.; Hay, P. J., Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. The Journal of Chemical Physics 1985, 82 (1), 284; (b) Hay, P. J.; Wadt, W. R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics 1985, 82 (1), 299.
    22. (a) Breslow, R.; Guo, T., Diels-Alder reactions in nonaqueous polar solvents. Kinetic effects of chaotropic and antichaotropic agents and of .beta.-cyclodextrin. Journal of the American Chemical Society 1988, 110 (17), 5613; (b) Barone, V.; Cossi, M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. The Journal of Physical Chemistry A 1998, 102 (11), 1995; (c) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. Journal of Computational Chemistry 2003, 24 (6), 669.
    23. (a) Peng, C.; Bernhard Schlegel, H., Combining Synchronous Transit and Quasi-Newton Methods to Find Transition States. Israel Journal of Chemistry 1993, 33 (4), 449; (b) Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J., Using redundant internal coordinates to optimize equilibrium geometries and transition states. Journal of Computational Chemistry 1996, 17 (1), 49.
    24. (a) van Zeist, W. J.; Bickelhaupt, F. M., The activation strain model of chemical reactivity. Org Biomol Chem 2010, 8 (14), 3118; (b) Fernandez, I.; Bickelhaupt, F. M., The activation strain model and molecular orbital theory: understanding and designing chemical reactions. Chem Soc Rev 2014, 43 (14), 4953; (c) Ess, D. H.; Houk, K. N., Distortion/Interaction Energy Control of 1,3-Dipolar Cycloaddition Reactivity. Journal of the American Chemical Society 2007, 129 (35), 10646; (d) Paton, R. S.; Kim, S.; Ross, A. G.; Danishefsky, S. J.; Houk, K. N., Experimental Diels-Alder reactivities of cycloalkenones and cyclic dienes explained through transition-state distortion energies. Angew Chem Int Ed Engl 2011, 50 (44), 10366; (e) Liu, F.; Paton, R. S.; Kim, S.; Liang, Y.; Houk, K. N., Diels-Alder reactivities of strained and unstrained cycloalkenes with normal and inverse-electron-demand dienes: activation barriers and distortion/interaction analysis. J Am Chem Soc 2013, 135 (41), 15642.
    25. (a) Hopffgarten, M. v.; Frenking, G., Energy decomposition analysis. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2 (1), 43; (b) Fernandez, I., Combined activation strain model and energy decomposition analysis methods: a new way to understand pericyclic reactions. Phys Chem Chem Phys 2014, 16 (17), 7662.
    26. (a) Hariharan, P. C.; Pople, J. A., The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica chimica acta 1973, 28 (3), 213; (b) Kobko, N.; Dannenberg, J. J., Effect of Basis Set Superposition Error (BSSE) upon ab Initio Calculations of Organic Transition States. The Journal of Physical Chemistry A 2001, 105 (10), 1944.
    27. Parr, R. G.; Szentpály, L. v.; Liu, S., Electrophilicity Index. Journal of the American Chemical Society 1999, 121 (9), 1922.
    28. Kozmin, S. A.; Rawal, V. H., Preparation and Diels−Alder Reactivity of 1-Amino-3-siloxy-1,3-butadienes. The Journal of Organic Chemistry 1997, 62 (16), 5252.
    29. Levandowski, B. J.; Zou, L.; Houk, K. N., Schleyer hyperconjugative aromaticity and Diels-Alder reactivity of 5-substituted cyclopentadienes. J Comput Chem 2016, 37 (1), 117.

    無法下載圖示 本全文未授權公開
    QR CODE