研究生: |
沈家平 Shen Chia Ping |
---|---|
論文名稱: |
心電圖訊號分析演算法與硬體架構設計 The Algorithm and Hardware Design for Electrocardiogram Signal Analysis |
指導教授: |
高文忠
Kao, Wen-Chung |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 小波轉換 、心電圖 、支持向量機 |
英文關鍵詞: | wavelet transform, electrocardiogram, support vector machine |
論文種類: | 學術論文 |
相關次數: | 點閱:287 下載:46 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
心電圖是心臟搏動相關的電位變化圖,而且對於醫師診斷出不同的心臟疾病和來監測、評估病人的病情是非常重要的。從兩段心跳之間所取出的心電圖樣本形狀通常用來辨識心臟方面的疾病。本篇論文中我們提出一個高效能的心電圖辨識系統,此系統可以適應性地從446個參數中選擇最重要的特徵出來,再利用支持向量機來辨識這些心電圖。而我們測試MIT-BIH Arrhythmia database中的心電圖辨識率可達98.09%,在已發表的論文中是效果最好的方法之一。
另外,我們也設計一個硬體的工具來完成抽取小波轉換的係數以及支持向量機的辨識器。此硬體可以增加辨識過程的速度以及嵌入成可攜式的元件。
Electrocardiogram (ECG) is a representation of the electrical activity of heartbeats and it is quite an important signal for doctors to diagnose cardiac disease and monitor patient conditions. The shape of each ECG beat cycle as well as the interval time between two successive beats is commonly used for identifying the types of heart diseases. In this thesis, we propose a high performance ECG recognition system which adaptively selects the most important features from 446 candidate parameters and identifies the heart condition based on modified support vector machines (SVM). With tested by MIT-BIH Arrhythmia database, the final classification result can achieve 98.09% which is believed to be the best one in the published literatures.
On the other hand, we also design a hardware engine dedicated for extracting wavelet transform based features and classification by SVM. The engine may help to speed up the recognition process and integrated into a portable device.
[1] C. S. Pattichis, E. Kyriacou, S. Voskarides, M. S. Pattichis, R. Istepanian, and C. N. Schiza, “Wireless telemedicine systems: an overview,” IEEE Antenna’s and Propagation Magazine, vol.44, no.2, pp.143-153, Apr. 2002.
[2] K. Hung and Y. T. Zhang, “Implementation of a WAP-Based telemedicine system for Patient Monitoring,” IEEE Trans. Information Technology in Biomedicine, vol.7, no.2, pp.101-107, June 2003.
[3] G.. Williams, K. Doughty, and D. A. Bradley, “A system approach to achieving CareNet-An integrated and intelligent telecare system,” IEEE Trans. Information Technology in Biomedicine, vol.2, no.1, pp.1-8, Mar. 1998.
[4] A. I. Hernández, F. Mora, G. Villegas, and G. Carrault, “Real-Time ECG transmission via internet for nonclinical applications,” IEEE Trans. Information Technology in Biomedicine, vol.5, no.3, pp.253-257, Sep. 2001.
[5] J. García, I. Martínez, and L. Sörnmo, “Remote processing server for ECG-Based clinical diagnosis support,” IEEE Trans. Information Technology in Biomedicine, vol.6, no.4, pp.277-284, Dec. 2002.
[6] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd Edition, Prentice Hall, USR, N.J. 2002.
[7] H. Laing and I. Hartimo, “A Heart Sound Feature Extraction Algorithm Based on Wavelet Decomposition and Reconstruction,” in Proc. of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol.20, no.3, pp.1539-1542, 1998.
[8] O. Abdel-Alim, N. Hamdy and M. A. El-Hanjouri, “Heart diseases diagnosis using heart sounds,” in Proc. IEEE National Radio Science Conference, pp. 634-640, Mar. 2002.
[9] H. F. Lu, H. W. Tzeng, M. C. Chen, and J. L. Chen, “Design a residential gateway for tele-homecare systems,” in Proc. 9th IEEE International Symp. Consumer Electroncis, pp. 291-295, 2005.
[10] M. L. Hilton, “Wavelet and wavelet packet compression of electrocardiograms,” IEEE Trans. Biomedical Engineering, vol.44, no.5, pp.394-402, May 1997.
[11] S. G. Miaou, H. L. Yen, and C. L. Lin, “Wavelet-based ECG compression using dynamic vector quantization with tree code vectors in single codebook,” IEEE Trans. Biomedical Engineering, vol.49, no.7, pp.233-239, July 2002.
[12] B. A. Rajoub, “An efficient coding algorithm for the compression of ECG signals using the wavelet transform,” IEEE Trans. Biomedical Engineering, vol.49 , pp.355-362, Apr. 2002.
[13] M. A. Zahhad, and B. A. Rajoub, “An effective coding technique for the compression of one-dimensional signals using wavelet transforms,” Medical Engineering Physics, vol.24, pp.185-199, 2002.
[14] Wen-Chung Kao, Wei-Hsin Chen, Chun-Kuo Yu, Chin-Ming Hong, and Sheng-Yuan Lin, “Portable real-time homecare system design with digital camera platform,” IEEE Trans. Consumer Electronics, vol.51, no.4, pp.1035-1041, Nov. 2005.
[15] Wen-Chung Kao, Wei-Hsin Chen, Chun-Kuo Yu, and Sheng-Yuan Lin, “A real-time system for portable homecare applications,” in Proc. IEEE International Sym. Consumer Electronics (ISCE), pp.369-374, Jun, 2005, Macau, 2005.
[16] Wen-Chung Kao, Chung-Kuo Yu, Wei-Hsin Chen, Chia-Ping Shen, and Yen-Wei Hung, “Automatic electrocardiogram recognition by wavelet transform and support vector machine,” 2005 CACS Automatic Control Conference, Taiwan, Nov. 2005.
[17] E. J. Claccio, S.M. Dunn, and M. Akay, “Biosignal pattern recognition and interpretation systems. .Methods of classification,” IEEE engineering in Medicine and Biology Magazine, vol.13, pp.129-135, 1994.
[18] Cui-Wei Li, Chong-Gxun Zeng, and Chang-Feng Tai, “Detection of ECG characteristic points using wavelet transform,” IEEE Trans. Biomedical Engineering, vol.42, no.1, pp.21-28, Jan. 1995.
[19] P. Ranjith, P. C. Baby, and P. Joseph, “ECG analysis using wavele transform : application to myocardial ischemia detection,” ITBM-RBM, vol. 24, pp. 44-47, 2003.
[20] N. Sivannarayana, and D.C. Reddy, “Biorthogonal wavelet transforms for ECG parameters estimation,” Med. Eng. Phy. Vol.21, pp.167-174, 1999.
[21] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell., vol.11, no.7, pp.674-693, July 1989.
[22] C. J. Lin, “A formal analysis of stopping criteria of decomposition methods for support vector machines,” IEEE Trans. Neural Network, vol.13, no.5, pp.1045-1052, Sep. 2002.
[23] C. J. Lin, “On the convergence of the decomposition method for support vector machines,” IEEE Trans. Neural Network, vol.12, no.6, pp.1288-1298, Nov. 2001.
[24] W. C. Kao, T. H. Sun, and S. Y. Lin, “A robust embedded software platform for versatile camera systems,” in Proc. IEEE International Symp. Circuits and Systems, pp. 5015-5018, Japan, Jun. 2005.
[25] Wen-Chung Kao, Chun-Kuo Yu, Chia-Ping Shen, and Pei-Yung Hsiao, “Electrocardiogram Analysis with Adaptive Feature Selection and Support Vector Machines,” in Proc. IEEE Asia Pacific Conference on Circuits and Systems, Singapore, Dec. 2006.
[26] G. Nora, 臨床心電圖學, 廖述朗編譯, 藝軒圖書出版社, 1996.
[27] M. S. Thaler, 心電圖學必備, 呂嘉陞編譯, 合記圖書出版社, 2002.
[28] J. Pan and W. J. Tompkins, “Real-Time QRS detection algorithm,” IEEE Trans. Biomedical Engineering, vol.BME-33, pp.220-236, Mar. 1985.
[29] J. Lee, K. Jeong, J. Yoon, and M. Lee, “A simple real-time QRS detection algorithm,” IEEE Proc. Biomed. Eng., vol.4, pp.1396 1398, Oct. 1996.
[30] S. Kadambe, R. Murray, and G. Faye, “Wavelet transform-based QRS complex detector,” IEEE Trans. Biomedical Engineering, vol.46, no.7, pp.838-848, July. 1999.
[31] H. A. Dinh, D. K. Kumar, N. D. Pah, and P. Burton, “Wavelet for QRS detection,” in Proc. 23rd Annual EMBS International Conference, pp.1883-1887, Oct. 2001.
[32] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York , 2001.
[33] R. Mark and G. Moody, MIT-BIH Arrhythmia Database Directory, Cambridge, MA:MIT, 1988.
[34] G. B. Moody, and R. G. Mark, “The impact of the MIT-BIH Arrhythmia Database,” IEEE Engineering in Medicine and Biology Magazine, vol.20, no.3, pp.45-50, May-June., 2001.
[35] J. Martínez, R. Akneuda, S. Olmos, A. Paula, and P. Laguna, “A Wavelet-Based ECG delineator: evaluation on standard databases” IEEE Tran. Biomedical Engineering, vol.51, no.4, pp.570-581, Apr. 2004.
[36] K. Minami, H. Nakajima, and T. Toyoshima, “Real-Time discrimination of ventricular tachyarrhythmia with fourier-transform neural network,” IEEE Trans. Biomedical Engineering, vol.46, no.2, pp. 179-185, Feb. 1999.
[37] S. Osowski, and T. H. Linh, “ECG beat recognition using fuzzy hybrid neural network,” IEEE Trans. Biomedical Engineering, vol. 48, no. 11, pp. 1265-1271, Nov. 2001.
[38] Z. D. Yuan, J. Q. Xu and G. P. Li, “Recognition of cardiac patterns based on wavelet analysis,” in Proc. IEEE International Symposium on Intelligent Control, pp. 642-645, 2003.
[39] I. Güler, and E. Übeyli, “Application of adaptive neuro-fuzzy inference system for detection of electrocardiographic change in patients with partial epilepsy using feature extraction,” Expert Systems with Application, vol. 27, pp. 323-330, 2004.
[40] M. Engin, “ECG beat classification using neuro-fuzzy network,” Pattern Recogn. Letters, vol.25, pp.1715-1722, 2004.
[41] S. Osowski, L. T. Haoi, and Markiewicz, “Support vector machine-based expert system for reliable heartbeat recognition,” IEEE Trans. Biomedical Engineering, vol.51, no.4, pp.582-589, Apr. 2004.
[42] I. Güler, and E. Übeyli, “ECG beat classifier designed by combined neural network model,” Pattern Recogn., vol.38, pp.199-208, 2005.
[43] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. Image Processing, vol. 1, pp. 205-220, Apr. 1992.
[44] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[45] S. S. Nayak, “Bit-level systolic imlememtation of 1-D and 2-D discrete wavelet transform,” in Proc. IEE Circuit Devices System, pp.25-32, Feb. 2005.
[46] P. Y. Chen, “VLSI Implementation for One-Dimensional Multilevel Lifting-Base Wavelet Transform,” IEEE Trans. Computers, pp.386-398, Apr. 2004.