研究生: |
董舒清 |
---|---|
論文名稱: |
血液壓力波對拍打器響應的物理模擬探討 The Responses of Blood Pressure Wave to External Periodic Forces by Simulation Studies |
指導教授: | 林玉英 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 徑向振動理論 、血液壓力波 |
論文種類: | 學術論文 |
相關次數: | 點閱:230 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以「徑向振動理論」的模式為基礎,利用彈性管來模擬血管,進行模擬實驗,模擬左心室血液流向主動脈的整個動脈系統模擬實驗,主要探討的部份為週期性外力對此物理模擬系統的影響,並適時的解釋徑向振動理論所符合的生理效應,以及了解徑向振動方程式中各個參數的物理意義,並從實驗中探討週期性外力在何種情況下對人體循環系統可得到最大的能量響應。
本實驗以一個電磁鐵做為基台做成輸出脈衝波、以及利用泵浦馬達模擬成週期波來模擬心臟的幫浦輸出;利用電壓讓喇叭共振的振動模擬成週期性外力(實驗中又稱為拍打器);乳膠管(Latex)模擬血管;使用水桶做為系統靜壓來模擬動脈系統中的靜平衡壓(static)。把脈衝波或週期波的能量輸入我們物理模擬的系統,由壓力轉換器量測水壓力對時間的變化,再經由傅立葉頻譜分析後與理論做比較。
本文研究證實了在徑向振動方程式中,可得到週期波對模擬系統的影響,並且,討論當能源訊號不同時,週期波訊號和拍打器訊號對實驗模擬系統的影響效應,和探討拍打器的性能對模擬系統的壓力分佈,以及將拍打器模擬成一種在人體外作用的物理治療器,討論拍打器在什麼位置上,心臟與其頻率、強度可對人體產生最大的響應。
1.吳鑒鑫、黃超文,「運動生理學」第二章 血液循環 (亞太圖書出版社, 2001年5月初出版)。
2.王唯工,氣的樂章,p.15~p.29 (大塊文化出版社,台北,2002)。
3.W. Harvey (1628), Movement of the heart and blood in animals, Frankurt: William Fitzer.
4.D. A. McDonald, Blood flow in arteries (Edward Arnold, London, 1974).
5.W. R. Milnor and C. D. Bertrsm, The relation between arterial viscoelasticityand wave propagation in the canine femoral artery, Circ. Res. 43, 870-879 (1978).
6.W. R. Milnor and C. R. Walker, Input impedence of the systemic circulation in man, Circ. Res. 40, 451-458 (1977b).
7.Raymond G. Gosling and Marc M. Budge, Terminology for Describing the Elatic Behavior of Arteries, Hypertension 2003; 41; 1180-1182 (2003).
8.Y. Y. Lin Wang, W. K. Sze, J. G. Bau, S. H. Wang, M. Y. Jan, T. L. Hsu, and W. K. Wang, The ventricular-arterial coupling system can be analyzed by the eigenwave modes of the whole arterial system, Applied Physics Letters 92, 1 (2008).
9.Y. Y. Lin Wang, W. B. Chiu, M. Y. Jan, JG Bau, S. P. Li, and W. K. Wang, Analysis of transverse wave as a propagation mode for the pressure pulse in large arteries, Journal of Applied Physics 102, 064702 (2007).
10.Y. Y. Wang, S. L. Chang, Y. E. Wu, T. L. Hsu, and W. K. Wang, Resonance, The missing phenomenon in hemodynamics, Circ. Res. 1991; 69; 246-249 (2008).
11.S. Y. Young, W. K. Wang, L. S. Chang, T. S. Kuo, The Filter Properties of the Arterial Beds of Organs, Rats. Acta. Physiol. Scand. 145, 401-406 (1992).
12.Y. Y. Lin Wang, M. Y. Jan, C. S Shyu, C. A. Chiang, and W. K. Wang, The Natural Frequencies of the Arterial System and Their Relation to the Heart Rate, IEEE Transactions on Biomedical Engineering 51, 193 (2004).
13.YY Lin Wang, MY Jan, GC Wang, JG Bau, and WK Wang, Pressure pulse velocity is related to the longitudinal elastic properties of the artery, Physiol. Meas. 25, 1397-1403 (2004).
14.Y. Y. Lin Wang, G. C. Wang, Y. H. Chen, D. J. Guo, and W. K. Wang, The eccentric position of the heart in the mammalian body and optimal energy transfer in single tube models, Physiol. Meas. 26, 99-108 (2005).
15.S. Hales, Statical Essays: II Haemostaticks (London, U.K: Innays and Manby, Reprinted by New York, NY: Hafner, 1973).
16.V. Creigen, L. Ferracina, A. Hold, S. van Mouvik, K. Sjauw, V. Rottschäfer, M. Vellekoop, and P. Zegeling, Modeling a Heart Pump
17.R. J. Gillies, P. A. Schornack, T. W. Seromb, and N. Raghunand, Causes and Effects of Heterogeneous Perfusion in Tumors (1999).
18.A. I. Moens, Die Pulskurve (Leiden, Netherlands, 1878).
19.J. R. Womersley, Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, J. Physiol. 127, 553-563 (1955).
20.J. R. Womersley, An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries, Wright Air Development Center Technical Report WADC-TR, 56-614 (1957).
21.H. Lamb, Hydrodynamics (sixth Edition), Cambridge University Press. (Reprinted 1945 by Dover Publication, New York).
22.Hans J. Weber and George B. Arfken, Essential Mathematical (fifth Edition), p.724~p.745.