研究生: |
曾學瑋 Tseng, Hsueh-Wei |
---|---|
論文名稱: |
微生物金離子感測器與利用生物素酵素與其受體胜肽成像微生物中的蛋白質 Microbial Sensor for the Detection of Gold and Imaging Microbial Proteins with Biotin Ligase and Biotin Acceptor Peptide |
指導教授: |
葉怡均
Yeh, Yi-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 微生物感測器 、耐金屬貪銅菌 、金的調節基因組cup 、青枯桿菌 、生物素化作用標記法 、可結合生物素的胜肽 、生物素的酵素 、生物素 |
英文關鍵詞: | fluorescence-based microbial sensor, Cupriavidus metallidurans, gold-resistance system controlled by cup regulon, Ralstonia eutropha, biotinylation, biotin acceptor peptide (BAP), biotin ligase (BirA), biotin |
論文種類: | 學術論文 |
相關次數: | 點閱:240 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部分,我們運用基因工程技術設計出一組針對金離子有專一性且
選擇性良好的微生物感測器。本實驗是採用耐金屬貪銅菌 (Cupriavidus
metallidurans)對金的調節基因組cup 系列的基因作為感測器的元件,並透
過基因工程技術以紅色螢光蛋白 (RFP)當作輸出訊號,用來檢測金屬。我
們將其應用於耐金屬貪銅菌 (Cupriavidus metallidurans) 和青枯桿菌
(Ralstonia eutropha)這兩種對環境適應力較強的土壤菌,一起探討這兩種微
生物感測器的專一性、耐受性和選擇性。由於傳統的儀器檢驗需要高成本、
高人力又耗時,可利用微生物感測器做簡單的操作,而且低成本又省時的
特性,在簡單的檢測及定量時,可以提供另一種替代的分析工具。
第二部分,我們運用生物素化作用 (biotinylation)標記法來觀察微生物
的蛋白質。螢光蛋白標記雖然是現在最普遍且高專一性的方法,但螢光蛋
白普遍都較大,會影響或干擾目標蛋白質的運動;生物素化作用標記則是
運用一段可結合生物素的胜肽 (biotin acceptor peptide, BAP)經過生物素的
酵素 (biotin ligase, BirA)催化,就可以與生物素 (biotin)結合,專一性高且
都是小分子,接下來就是比較兩個方法的效果。此系統原本應用於哺乳類
動物細胞的蛋白質研究,而本實驗將其技術應用於微生物的蛋白質標記,
不只是觀察單一的蛋白質,也可以觀察蛋白質與蛋白質之間的交互作用
(protein-protein interactions, PPIs),拓展對於微生物的顯像技術和應用方法
的選擇。
The part I of this thesis presents a fluorescence-based microbial sensor for
the detection of heavy metal ions as a novel analytical tool for environmental
applications. Our results demonstrate the effectiveness of whole-cell biosensor
in the selective detection of gold ions. Cupriavidus metallidurans has a
gold-resistance system controlled by cup regulon that has a gold-specific
sensory protein CupR, a transcriptional regulator of MerR family. Two
heavy-metal tolerant proteobacteria, Cupriavidus metallidurans and Ralstonia
eutropha, were examined and showed great specificity. This work highlights
the potential of employing engineered microbial strains as robust analytical
tools.
And, the part II describes a simple way to label proteins of microbes with
biotinylation. The fusion of a fluorescent protein to target proteins has high
specificity, but its size potentially disrupts trafficking and may cause
misfolding. So we used an enzyme, biotin ligase (BirA) from E. coli, and a
15-amino acid peptide, biotin acceptor peptide (BAP), to achieve the high
specificity and rapid labeling. Besides, BAP is a small tag and has less potential
to disrupt target proteins. Microbial surface proteins tagged with BAP are
biotinylated by biotin ligase. The other hand, this methodology also can label
protein-protein interactions (PPIs) in cell. One protein of interest is fused to
BirA, while another protein is fused to BAP substrate. Aside from mammalian
cells, this work has demonstrated the adaptability of this technique to microbial
system.
1. Verma, N.; Singh, M., Biosensors for heavy metals. BioMetals 2005, 18 (2),
121-129.
2. Yagi, K., Applications of whole-cell bacterial sensors in biotechnology and
environmental science. Appl Microbiol Biotechnol 2007, 73 (6), 1251-8.
3. Reith, F.; Etschmann, B.; Grosse, C.; Moors, H.; Benotmane, M. A.; Monsieurs,
P.; Grass, G.; Doonan, C.; Vogt, S.; Lai, B.; Martinez-Criado, G.; George, G. N.; Nies,
D. H.; Mergeay, M.; Pring, A.; Southam, G.; Brugger, J., Mechanisms of gold
biomineralization in the bacterium Cupriavidus metallidurans. Proceedings of the
National Academy of Sciences 2009.
4. (a) Brown, N. L.; Stoyanov, J. V.; Kidd, S. P.; Hobman, J. L., The MerR family
of transcriptional regulators. FEMS Microbiology Reviews 2003, 27 (2-3), 145-163; (b)
Ravel, J.; DiRuggiero, J.; Robb, F. T.; Hill, R. T., Cloning and Sequence Analysis of
the Mercury Resistance Operon of Streptomyces sp. Strain CHR28 Reveals a Novel
Putative Second Regulatory Gene. Journal of Bacteriology 2000, 182 (8), 2345-2349.
5. Perez Audero, M. E.; Podoroska, B. M.; Ibanez, M. M.; Cauerhff, A.; Checa, S.
K.; Soncini, F. C., Target transcription binding sites differentiate two groups of
MerR-monovalent metal ion sensors. Molecular microbiology 2010, 78 (4), 853-65.
6. Checa, S. K.; Espariz, M.; Audero, M. E.; Botta, P. E.; Spinelli, S. V.; Soncini, F.
C., Bacterial sensing of and resistance to gold salts. Molecular microbiology 2007, 63
(5), 1307-18.
7. Jian, X.; Wasinger, E. C.; Lockard, J. V.; Chen, L. X.; He, C., Highly sensitive
and selective gold(I) recognition by a metalloregulator in Ralstonia metallidurans. J
Am Chem Soc 2009, 131 (31), 10869-71.
8. Checa, S. K.; Soncini, F. C., Bacterial gold sensing and resistance. Biometals
2011, 24 (3), 419-27.
9. Cerminati, S.; Soncini, F. C.; Checa, S. K., Selective detection of gold using
genetically engineered bacterial reporters. Biotechnology and bioengineering 2011,
108 (11), 2553-60.
10. Wei, W.; Zhu, T.; Wang, Y.; Yang, H.; Hao, Z.; Chen, P. R.; Zhao, J., Engineering
a gold-specific regulon for cell-based visual detection and recovery of gold. Chemical
Science 2012, 3 (6), 1780.
11. Tseng, H. W.; Tsai, Y. J.; Yen, J. H.; Chen, P. H.; Yeh, Y. C., A fluorescence-based
microbial sensor for the selective detection of gold. Chemical communications 2014,
50 (14), 1735-7.
12. Uttamapinant, C.; White, K. A.; Baruah, H.; Thompson, S.; Fernández-Suárez,
M.; Puthenveetil, S.; Ting, A. Y., A fluorophore ligase for site-specific protein labeling
108
inside living cells. Proceedings of the National Academy of Sciences 2010, 107 (24),
10914-10919.
13. Lin, M. Z.; Wang, L., Selective labeling of proteins with chemical probes in
living cells. Physiology 2008, 23, 131-41.
14. Chen, I.; Choi, Y. A.; Ting, A. Y., Phage display evolution of a peptide substrate
for yeast biotin ligase and application to two-color quantum dot labeling of cell
surface proteins. J Am Chem Soc 2007, 129 (20), 6619-25.
15. Li, Y.; Sousa, R., Expression and purification of E. coli BirA biotin ligase for in
vitro biotinylation. Protein expression and purification 2012, 82 (1), 162-7.
16. Chen, I.; Howarth, M.; Lin, W.; Ting, A. Y., Site-specific labeling of cell surface
proteins with biophysical probes using biotin ligase. Nature methods 2005, 2 (2),
99-104.
17. Plançon, L.; Janmot, C.; le Maire, M.; Desmadril, M.; Bonhivers, M.; Letellier,
L.; Boulanger, P., Characterization of a High-affinity Complex Between the Bacterial
Outer Membrane Protein FhuA and the Phage T5 Protein pb5. Journal of Molecular
Biology 2002, 318 (2), 557-569.
18. Slavoff, S. A.; Liu, D. S.; Cohen, J. D.; Ting, A. Y., Imaging protein-protein
interactions inside living cells via interaction-dependent fluorophore ligation. Journal
of the American Chemical Society 2011, 133 (49), 19769-76.
19. Fernandez-Suarez, M.; Chen, T. S.; Ting, A. Y., Protein-protein interaction
detection in vitro and in cells by proximity biotinylation. Journal of the American
Chemical Society 2008, 130 (29), 9251-3.
20. Mohammadi, T.; Ploeger, G. E.; Verheul, J.; Comvalius, A. D.; Martos, A.;
Alfonso, C.; van Marle, J.; Rivas, G.; den Blaauwen, T., The GTPase activity of
Escherichia coli FtsZ determines the magnitude of the FtsZ polymer bundling by
ZapA in vitro. Biochemistry 2009, 48 (46), 11056-66.
21. Buss, J.; Coltharp, C.; Huang, T.; Pohlmeyer, C.; Wang, S. C.; Hatem, C.; Xiao,
J., In vivo organization of the FtsZ-ring by ZapA and ZapB revealed by quantitative
super-resolution microscopy. Molecular microbiology 2013, 89 (6), 1099-120.
22. 戴珮琳. 利用化學標定及質譜技術分析經脂多醣刺激後小鼠巨噬細胞
(RAW 264.7) 之比較分泌蛋白質體研究. 國立臺灣師範大學, 2013.