簡易檢索 / 詳目顯示

研究生: 戴珮琳
Pei-Lin Tai
論文名稱: 利用化學標定及質譜技術分析經脂多醣刺激後小鼠巨噬細胞 (RAW 264.7) 之比較分泌蛋白質體研究
Comparative Secretome Analysis of LPS-stimulated RAW 264.7 by Chemical Labeling and Mass Spectrometry
指導教授: 陳頌方
Chen, Sung-Fang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 117
中文關鍵詞: 小鼠巨噬細胞株脂多醣發炎反應同重元素相對與絕對定量強陽離子交換層析等電聚焦西方墨點法絲甘蛋白聚醣
英文關鍵詞: RAW264.7, lipopolysaccharide, inflammation, iTRAQ, SCX, isoelectric focusing, Western blot, serglycin
論文種類: 學術論文
相關次數: 點閱:183下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脂多醣(lipopolysaccharide, LPS)是革蘭氏陰性菌細胞壁外膜上一複雜醣脂分子,對於哺乳動物具有毒性,會誘使強烈的發炎反應並產生許多細胞激素,若過度的大量表現,則會導致敗血症和感染性休克。在此篇研究中,我們採用同重元素相對和絕對定量(iTRAQ)的標定策略及質譜技術,分析LPS刺激後小鼠巨噬細胞(RAW 264.7)分泌的蛋白質。為了降低樣品的複雜度並提高鑑定蛋白質的動態範圍以及其序列覆蓋率,在送入奈米級液相層析質譜分析前會先結合強陽離子交換層析法(SCX)或OFFGEL等電聚焦分離技術對iTRAQ標定胜肽進行分離。本實驗共鑑定及定量654種蛋白質,這些蛋白質絕大多數和細胞過程以及調控相關,其中52個蛋白質在LPS刺激後具有顯著表現量的差異。我們從中篩選出經LPS刺激後含量具有顯著上升的蛋白質serglycin進行進一步的研究,利用西方墨點法(Western blot)驗證確認在離體細胞培養液以及活體小鼠血清中證實LPS可以活化serglycin的表現。由於探討LPS刺激RAW 264.7產生的分泌蛋白質的研究不多,因此本研究所鑑定出表現差異蛋白質對於LPS刺激後巨噬細胞產生發炎相關反應提供更多的瞭解。

    Lipopolysaccharide (LPS) is a complex glycolipid component of outer membrane of gram-negative bacteria. It is highly toxic for mammals, inducing strong inflammatory response and produce many cytokines. In this study, we employed the isobaric tag for relative and absolute quantitation (iTRAQ) labeling strategy and mass spectrometry to analyze the secreted proteins from LPS-stimulated RAW 264.7 cell line. To reduce sample complexity for improving protein dynamic range and sequence coverage, combination of offline strong cation exchange chromatography (SCX) or OFFGEL isoelectric focusing is applied for fractionation of iTRAQ labeled peptides before reversed phase nanoLC mass spectrometry analysis. A total of 654 proteins were identified and quantified; 52 proteins were differentially expressed between LPS-stimulated cells and control cells. Many of them are associated with cellular process and regulation. Serglycin, an up-regulated proteins in LPS-stimulated macrophage cells, was subsequently validated both in vitro (culture medium) and in vivo (mouse serum) by Western blot. This is one of few studies of secretome analysis in LPS-stimulated RAW 264.7 macrophages and these secretory proteins can provide further understanding of LPS-induced inflammation associated responses in macrophages.

    謝誌........................................................I 目錄.......................................................II 圖目錄......................................................V 表目錄....................................................VII 英文縮寫檢索表...........................................VIII Abstract....................................................X 中文摘要...................................................XI 第一章 序論................................................1 一、免疫系統................................................1 二、發炎反應................................................2 三、脂多醣(lipopolysaccharide, LPS).........................3 I. 概述................................................3 II. Endotoxin tolerance.................................4 III. 細胞經LPS刺激其內部的訊號機制.......................4 四、蛋白質分泌機制..........................................5 五、差異蛋白質體學(differential proteomics).................6 I. 二維凝膠電泳(two-dimensional gel electrophoresis, 2-DE).......................................................7 II. 代謝物標定(metabolic labeling) (in vivo)............8 III. 化學標定(chemical labeling) (in vitro)..............8 六、液相層析分離技術.......................................11 七、質譜儀技術.............................................14 八、細胞因子微陣列(sandwich-based antibody array)..........17 九、西方墨點法(Western blot)...............................18 十、研究動機...............................................19 第二章 實驗材料與方法......................................20 一、樣品...................................................20 二、藥品...................................................21 三、試劑...................................................21 四、儀器設備...............................................22 五、蛋白質濃度測定(Bradford protein assay).................23 六、蛋白質水解(in-solution digestion)和標定iTRAQ®試劑......23 七、第一維分餾策略.........................................24 I. 強陽離子交換層析法(SCX)............................24 II. 等電聚焦分級分離儀(sIEF)...........................25 八、自製碳18離心管柱(C18 spin column)去鹽..................27 九、奈米級液相層析電噴灑游離串聯式質譜(nanoLC ESI tandem Mass spectrometry).........................................28 十、資料分析(data analysis)................................31 十一、資料驗證(verification)以及確認(validation)...........33 I. 西方墨點法(Western blot)...........................33 第三章 實驗結果與討論......................................39 一、樣品蛋白質濃度測定.....................................39 二、不同分餾策略對iTRAQ標記胜肽之分離......................39 I. 分餾...............................................39 II. 分餾策略之正交性(orthogonality)....................41 III. 分餾策略之互補性(complementarity)..................41 三、蛋白質身分鑑定.........................................42 四、蛋白質定量.............................................43 五、細胞因子微陣列(cytokine microarray)....................44 六、Wetern blot鑑定結果....................................45 I. RAW264.7 cell secreted proteins: (in vitro)........45 II. Mice serum: (in vivo)..............................46 七、蛋白質分泌機制.........................................46 第四章 結論與未來展望......................................48 附圖.......................................................49 附表.......................................................91 參考文獻..................................................110

    (1) Raetz, C. R.: Biochemistry of endotoxins. Annual review of biochemistry 1990, 59, 129-70.
    (2) Dobrovolskaia, M. A.; Vogel, S. N.: Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes and infection / Institut Pasteur 2002, 4, 903-14.
    (3) Swearingen, K. E.; Loomis, W. P.; Zheng, M.; Cookson, B. T.; Dovichi, N. J.: Proteomic profiling of lipopolysaccharide-activated macrophages by isotope coded affinity tagging. Journal of proteome research 2010, 9, 2412-21.
    (4) Hibbs, J. B., Jr.; Taintor, R. R.; Vavrin, Z.; Rachlin, E. M.: Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochemical and biophysical research communications 1988, 157, 87-94.
    (5) MacMicking, J.; Xie, Q. W.; Nathan, C.: Nitric oxide and macrophage function. Annual review of immunology 1997, 15, 323-50.
    (6) Rajaiah, R.; Perkins, D. J.; Polumuri, S. K.; Zhao, A.; Keegan, A. D.; Vogel, S. N.: Dissociation of endotoxin tolerance and differentiation of alternatively activated macrophages. J Immunol 2013, 190, 4763-72.
    (7) West, M. A.; Heagy, W.: Endotoxin tolerance: a review. Critical care medicine 2002, 30, S64-73.
    (8) Nomura, F.; Akashi, S.; Sakao, Y.; Sato, S.; Kawai, T.; Matsumoto, M.; Nakanishi, K.; Kimoto, M.; Miyake, K.; Takeda, K.; Akira, S.: Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. J Immunol 2000, 164, 3476-9.
    (9) Cuschieri, J.; Billigren, J.; Maier, R. V.: Endotoxin tolerance attenuates LPS-induced TLR4 mobilization to lipid rafts: a condition reversed by PKC activation. Journal of leukocyte biology 2006, 80, 1289-97.
    (10) Baranova, I.; Vishnyakova, T.; Bocharov, A.; Chen, Z.; Remaley, A. T.; Stonik, J.; Eggerman, T. L.; Patterson, A. P.: Lipopolysaccharide down regulates both scavenger receptor B1 and ATP binding cassette transporter A1 in RAW cells. Infection and immunity 2002, 70, 2995-3003.
    (11) Akira, S.; Takeda, K.; Kaisho, T.: Toll-like receptors: critical proteins linking innate and acquired immunity. Nature immunology 2001, 2, 675-80.
    (12) West, A. P.; Koblansky, A. A.; Ghosh, S.: Recognition and signaling by toll-like receptors. Annual review of cell and developmental biology 2006, 22, 409-37.
    (13) Akira, S.; Takeda, K.: Toll-like receptor signalling. Nature reviews. Immunology 2004, 4, 499-511.
    (14) Rothwarf, D. M.; Karin, M.: The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Science's STKE : signal transduction knowledge environment 1999, 1999, RE1.
    (15) Zhang, H.; Zhao, C.; Li, X.; Zhu, Y.; Gan, C. S.; Wang, Y.; Ravasi, T.; Qian, P. Y.; Wong, S. C.; Sze, S. K.: Study of monocyte membrane proteome perturbation during lipopolysaccharide-induced tolerance using iTRAQ-based quantitative proteomic approach. Proteomics 2010, 10, 2780-9.
    (16) Skalnikova, H.; Motlik, J.; Gadher, S. J.; Kovarova, H.: Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 2011, 11, 691-708.
    (17) Nickel, W.; Rabouille, C.: Mechanisms of regulated unconventional protein secretion. Nature reviews. Molecular cell biology 2009, 10, 148-55.
    (18) Bendtsen, J. D.; Nielsen, H.; von Heijne, G.; Brunak, S.: Improved prediction of signal peptides: SignalP 3.0. Journal of molecular biology 2004, 340, 783-95.
    (19) Bendtsen, J. D.; Jensen, L. J.; Blom, N.; Von Heijne, G.; Brunak, S.: Feature-based prediction of non-classical and leaderless protein secretion. Protein engineering, design & selection : PEDS 2004, 17, 349-56.
    (20) O'Farrell, P. H.: High resolution two-dimensional electrophoresis of proteins. The Journal of biological chemistry 1975, 250, 4007-21.
    (21) Gygi, S. P.; Corthals, G. L.; Zhang, Y.; Rochon, Y.; Aebersold, R.: Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proceedings of the National Academy of Sciences of the United States of America 2000, 97, 9390-5.
    (22) Rabilloud, T.: Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2002, 2, 3-10.
    (23) Gorg, A.; Weiss, W.; Dunn, M. J.: Current two-dimensional electrophoresis technology for proteomics. Proteomics 2004, 4, 3665-85.
    (24) Merril, C. R.; Switzer, R. C.; Van Keuren, M. L.: Trace polypeptides in cellular extracts and human body fluids detected by two-dimensional electrophoresis and a highly sensitive silver stain. Proceedings of the National Academy of Sciences of the United States of America 1979, 76, 4335-9.
    (25) Unlu, M.; Morgan, M. E.; Minden, J. S.: Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997, 18, 2071-7.
    (26) Tonge, R.; Shaw, J.; Middleton, B.; Rowlinson, R.; Rayner, S.; Young, J.; Pognan, F.; Hawkins, E.; Currie, I.; Davison, M.: Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 2001, 1, 377-96.
    (27) Ong, S. E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M.: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & cellular proteomics : MCP 2002, 1, 376-86.
    (28) Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R.: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature biotechnology 1999, 17, 994-9.
    (29) Ross, P. L.; Huang, Y. N.; Marchese, J. N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-Jones, M.; He, F.; Jacobson, A.; Pappin, D. J.: Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular & cellular proteomics : MCP 2004, 3, 1154-69.
    (30) Pichler, P.; Kocher, T.; Holzmann, J.; Mazanek, M.; Taus, T.; Ammerer, G.; Mechtler, K.: Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ Orbitrap. Analytical chemistry 2010, 82, 6549-58.
    (31) Zieske, L. R.: A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. Journal of experimental botany 2006, 57, 1501-8.
    (32) Hao, P.; Qian, J.; Ren, Y.; Sze, S. K.: Electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) versus strong cation exchange (SCX) for fractionation of iTRAQ-labeled peptides. Journal of proteome research 2011, 10, 5568-74.
    (33) Thompson, A.; Schafer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.; Schmidt, G.; Neumann, T.; Johnstone, R.; Mohammed, A. K.; Hamon, C.: Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Analytical chemistry 2003, 75, 1895-904.
    (34) Dayon, L.; Hainard, A.; Licker, V.; Turck, N.; Kuhn, K.; Hochstrasser, D. F.; Burkhard, P. R.; Sanchez, J. C.: Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Analytical chemistry 2008, 80, 2921-31.
    (35) Shevchenko, A.: Evaluation of the efficiency of in-gel digestion of proteins by peptide isotopic labeling and MALDI mass spectrometry. Analytical biochemistry 2001, 296, 279-83.
    (36) Yao, X.; Afonso, C.; Fenselau, C.: Dissection of proteolytic 18O labeling: endoprotease-catalyzed 16O-to-18O exchange of truncated peptide substrates. Journal of proteome research 2003, 2, 147-52.
    (37) Hsu, J. L.; Huang, S. Y.; Chow, N. H.; Chen, S. H.: Stable-isotope dimethyl labeling for quantitative proteomics. Analytical chemistry 2003, 75, 6843-52.
    (38) Boersema, P. J.; Raijmakers, R.; Lemeer, S.; Mohammed, S.; Heck, A. J.: Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nature protocols 2009, 4, 484-94.
    (39) Motoyama, A.; Yates, J. R., 3rd: Multidimensional LC separations in shotgun proteomics. Analytical chemistry 2008, 80, 7187-93.
    (40) Wang, X.; Stoll, D. R.; Schellinger, A. P.; Carr, P. W.: Peak capacity optimization of peptide separations in reversed-phase gradient elution chromatography: fixed column format. Analytical chemistry 2006, 78, 3406-16.
    (41) Gilar, M.; Olivova, P.; Daly, A. E.; Gebler, J. C.: Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. Journal of separation science 2005, 28, 1694-703.
    (42) Gilar, M.; Olivova, P.; Daly, A. E.; Gebler, J. C.: Orthogonality of separation in two-dimensional liquid chromatography. Analytical chemistry 2005, 77, 6426-34.
    (43) Cargile, B. J.; Sevinsky, J. R.; Essader, A. S.; Stephenson, J. L., Jr.; Bundy, J. L.: Immobilized pH gradient isoelectric focusing as a first-dimension separation in shotgun proteomics. Journal of biomolecular techniques : JBT 2005, 16, 181-9.
    (44) Lengqvist, J.; Uhlen, K.; Lehtio, J.: iTRAQ compatibility of peptide immobilized pH gradient isoelectric focusing. Proteomics 2007, 7, 1746-52.
    (45) Horth, P.; Miller, C. A.; Preckel, T.; Wenz, C.: Efficient fractionation and improved protein identification by peptide OFFGEL electrophoresis. Molecular & cellular proteomics : MCP 2006, 5, 1968-74.
    (46) Heller, M.; Michel, P. E.; Morier, P.; Crettaz, D.; Wenz, C.; Tissot, J. D.; Reymond, F.; Rossier, J. S.: Two-stage Off-Gel isoelectric focusing: protein followed by peptide fractionation and application to proteome analysis of human plasma. Electrophoresis 2005, 26, 1174-88.
    (47) Ernoult, E.; Gamelin, E.; Guette, C.: Improved proteome coverage by using iTRAQ labelling and peptide OFFGEL fractionation. Proteome science 2008, 6, 27.
    (48) Chenau, J.; Michelland, S.; Sidibe, J.; Seve, M.: Peptides OFFGEL electrophoresis: a suitable pre-analytical step for complex eukaryotic samples fractionation compatible with quantitative iTRAQ labeling. Proteome science 2008, 6, 9.
    (49) Agilent 3100 OFFGEL Fractionator.
    (50) M. S. B. Munson, F. H. F.: Chemical Ionization Mass Spectrometry. I. General Introduction. . J. Am. Chem. Soc. 1966, 88, 2621-2630.
    (51) Fales, H. M.; Milne, G. W.; Pisano, J. J.; Brewer, H. B., Jr.; Blum, M. S.; MacConnell, J. G.; Brand, J.; Law, N.: Biological applications of electron ionization and chemical ionization mass spectrometry. Recent progress in hormone research 1972, 28, 591-626.
    (52) Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M.: Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64-71.
    (53) Michael Karas, D. B., Franz Hillenkamp: Influence of the Wavelength in High-Irradiance Ultraviolet Laser Desorption Mass Spectrometry of Organic Molecules. Anal. Chem. 1985, 57, 2935-2939.
    (54) Michael Karas, F. H.: Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1988, 60, 2299-2301.
    (55) Michael G. Ikonomou, A. T. B., Paul Kebarle: Electrospray-ion spray a comparison of mechanisms and performance. Anal. Chem. 1991, 63, 1989-1998.
    (56) Yi, E. C.; Lee, H.; Aebersold, R.; Goodlett, D. R.: A microcapillary trap cartridge-microcapillary high-performance liquid chromatography electrospray ionization emitter device capable of peptide tandem mass spectrometry at the attomole level on an ion trap mass spectrometer with automated routine operation. Rapid communications in mass spectrometry : RCM 2003, 17, 2093-8.
    (57) Nesvizhskii, A. I.; Keller, A.; Kolker, E.; Aebersold, R.: A statistical model for identifying proteins by tandem mass spectrometry. Analytical chemistry 2003, 75, 4646-58.
    (58) Peng, J.; Elias, J. E.; Thoreen, C. C.; Licklider, L. J.; Gygi, S. P.: Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. Journal of proteome research 2003, 2, 43-50.
    (59) DONALD F. HUNT, J. R. Y. I., JEFFREY SHABANOWITZ, SCOTT WINSTON, CHARLES R. HAUER: Protein sequencing by tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 1986, 83, 6233-6237.
    (60) Wells, J. M.; McLuckey, S. A.: Collision-induced dissociation (CID) of peptides and proteins. Methods in enzymology 2005, 402, 148-85.
    (61) Yates, J. R., 3rd; Eng, J. K.; McCormack, A. L.; Schieltz, D.: Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Analytical chemistry 1995, 67, 1426-36.
    (62) Mortz, E.; O'Connor, P. B.; Roepstorff, P.; Kelleher, N. L.; Wood, T. D.; McLafferty, F. W.; Mann, M.: Sequence tag identification of intact proteins by matching tanden mass spectral data against sequence data bases. Proceedings of the National Academy of Sciences of the United States of America 1996, 93, 8264-7.
    (63) Pappin, D. J.; Hojrup, P.; Bleasby, A. J.: Rapid identification of proteins by peptide-mass fingerprinting. Current biology : CB 1993, 3, 327-32.
    (64) Towbin, H.; Staehelin, T.; Gordon, J.: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America 1979, 76, 4350-4.
    (65) Renart, J.; Reiser, J.; Stark, G. R.: Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: a method for studying antibody specificity and antigen structure. Proceedings of the National Academy of Sciences of the United States of America 1979, 76, 3116-20.
    (66) Burnette, W. N.: "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical biochemistry 1981, 112, 195-203.
    (67) Hathout, Y.: Approaches to the study of the cell secretome. Expert review of proteomics 2007, 4, 239-48.
    (68) Zhang, X.; Kuramitsu, Y.; Fujimoto, M.; Hayashi, E.; Yuan, X.; Nakamura, K.: Proteomic analysis of macrophages stimulated by lipopolysaccharide: Lipopolysaccharide inhibits the cleavage of nucleophosmin. Electrophoresis 2006, 27, 1659-68.
    (69) Gadgil, H. S.; Pabst, K. M.; Giorgianni, F.; Umstot, E. S.; Desiderio, D. M.; Beranova-Giorgianni, S.; Gerling, I. C.; Pabst, M. J.: Proteome of monocytes primed with lipopolysaccharide: analysis of the abundant proteins. Proteomics 2003, 3, 1767-80.
    (70) Gu, S.; Wang, T.; Chen, X.: Quantitative proteomic analysis of LPS-induced differential immune response associated with TLR4 Polymorphisms by multiplex amino acid coded mass tagging. Proteomics 2008, 8, 3061-70.
    (71) Wen, C. L.; Chang, C. C.; Huang, S. S.; Kuo, C. L.; Hsu, S. L.; Deng, J. S.; Huang, G. J.: Anti-inflammatory effects of methanol extract of Antrodia cinnamomea mycelia both in vitro and in vivo. Journal of ethnopharmacology 2011, 137, 575-84.
    (72) Wu, M. D.; Cheng, M. J.; Wang, B. C.; Yech, Y. J.; Lai, J. T.; Kuo, Y. H.; Yuan, G. F.; Chen, I. S.: Maleimide and maleic anhydride derivatives from the mycelia of Antrodia cinnamomea and their nitric oxide inhibitory activities in macrophages. Journal of natural products 2008, 71, 1258-61.
    (73) Wei, J.; Bhatt, S.; Chang, L. M.; Sampson, H. A.; Masilamani, M.: Isoflavones, genistein and daidzein, regulate mucosal immune response by suppressing dendritic cell function. PloS one 2012, 7, e47979.
    (74) Keller, A.; Nesvizhskii, A. I.; Kolker, E.; Aebersold, R.: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Analytical chemistry 2002, 74, 5383-92.
    (75) Gilar, M.; Olivova, P.; Chakraborty, A. B.; Jaworski, A.; Geromanos, S. J.; Gebler, J. C.: Comparison of 1-D and 2-D LC MS/MS methods for proteomic analysis of human serum. Electrophoresis 2009, 30, 1157-67.
    (76) Bhatia, V. N.; Perlman, D. H.; Costello, C. E.; McComb, M. E.: Software tool for researching annotations of proteins: open-source protein annotation software with data visualization. Analytical chemistry 2009, 81, 9819-23.

    下載圖示
    QR CODE