簡易檢索 / 詳目顯示

研究生: 葉柏安
Po-An Yeh
論文名稱: 研究果蠅PP2A B次單元twins的功能以及和Tau蛋白的交互作用
Functional Study of twins, the Drosophila PP2A B Subunit and it’s Interaction with Tau
指導教授: 蘇銘燦
Su, Ming-Tsan
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 119
中文關鍵詞: 阿茲海默症神經退化疾病小腦萎縮症
論文種類: 學術論文
相關次數: 點閱:147下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • PR55Bbeta的表現異常,長久以來一直被認為是小腦萎縮12型的致病原因。隨後的研究指出,PR55Bbeta的表現量增加,極可能是小腦萎縮12型的致病原因。然而,可以模擬小腦萎縮12型的動物模式,一直沒被建立,以其在生物體內的致病機轉仍不明確。在本研究實驗中,PR55Bbeta過渡表現的果蠅模式被建立,而且其果蠅表現出運動力下降和神經病變的特徵。在研究PR55Bbeta和Tau蛋白之間的作用時,我意外的利用果蠅背甲上毛的數目,建立一個新穎的模式系統,可以穩定的檢測出Tau蛋白的磷酸化程度。研究期間,我更發現,磷酸化的Tau蛋白,有保護神經的功能,並且延長果蠅的壽命。相反的,無法磷酸的Tau蛋白,對神經的發育有不好的影響。最後,本研究也指出,PP2A的B次單元與細胞骨架的調控有關,為一個新發現的嶄新的功能。也許這些研究成果,可以連結小腦萎縮12型和阿茲海默症之間致病機轉的關連。

    Misregulated PR55Bβ, a B regulatory subunit of protein phosphotase 2A (PP2A), has long been documented to be associated with spinocerebellar ataxia type 12 (SCA12). Mounting evidence has shown that overexpression of PR55Bβ might be the plausible cause of SCA12. However, the pathogenic animal model of SCA12 remains absent and needs to be established to underline its pathomechanism in vivo. In this study, it has been shown that overexpression of PR55Bβ in flies led to severely retarded locomotion activity and aberrant neuronal morphology. During the investigation of the genetic interaction between PR55Bβ and Tau, I hit upon a novel notum assay system for robustly assessing phosphorylation of Tau. Further investigations revealed that hyperphosphorylated Tau might protect and somehow benefit the adult aging flies resulting in longer life-span. Conversely, both hypophosphorylated Tau and overexpression of PR55Bβ exerted detrimental effects on the dendritic outgrowth and resulted in slow locomotion activity and shortened life-span. Finally, I demonstrated that actin polymerization is positively regulated by Drosophila PP2A-B subunit, opening a new frontier for the role played of PP2A in the regulation of actin cytoskeleton. These studies might provide a link between the pathogenesis of Alzheimer’s disease and SCA12.

    Introduction Expansion of a CAG trinucleotide repeat in the 5´ region of PPP2R2B is associated with SCA12 ----------------------------------------------------------- 1 The components of PP2A ------------------------------------------------------------ 2 The PP2A inhibitors and activator -------------------------------------------------- 5 Identified functions of twins in Drosophila and other regulatory subunits in other species ------------------------------------------------------------------------ 5 PP2A is the pivotal phosphatase of Tau concerned with Alzheimer’s disease 7 The controversial role of hyperphosphorylated Tau ------------------------------ 9 The involvement of PP2A in tumorgenesis and apoptosis ----------------------- 10 The regulation of actin cytoskeleton by PP2A 12 Materials and Methods Fly strains and stocks ----------------------------------------------------------------- 13 Molecular cloning and generation of transgenic flies ---------------------------- 14 Scanning electron microscopy ------------------------------------------------------- 15 Immunoblotting ------------------------------------------------------------------------ 15 Lithium chloride and alsterpaullone treatment ------------------------------------ 16 RT-PCR --------------------------------------------------------------------------------- 17 Notum bristle quantification --------------------------------------------------------- 18 LacZ staining --------------------------------------------------------------------------- 18 Clonal expression in salivary gland and immunofluorescence ------------------ 18 Life span measurement --------------------------------------------------------------- 19 Climbing assay ------------------------------------------------------------------------- 20 SH-SY5Y cells culture ---------------------------------------------------------------- 20 Results PP2A-B expression pattern in the fly nervous system ---------------------------- 21 The detrimental effects of PP2A-B overexpression on the fly nervous system 22 PP2A-B dephosphorylates human tau protein in vivo ---------------------------- 23 PR55Bβ2 did not appear to rescue hTauWT inducing rough eye phenotype --- 24 Notum bristle number is reduced by hTau expression and subsequently recovered by co-expressing PP2A-B ------------------------------------------- 25 Bristle loss caused by hTau overexpression is phosphorylation-dependent -- 27 Attenuating GSK3β activity decreases hTau phosphorylation and rescues hyperphosphorylated hTau inducing notum bristle loss ---------------------- 29 Heterozygous depletion of endogenous Tau restores bristle loss on hTau expressing notum ------------------------------------------------------------------ 31 Usefulness as a drug screening method for tau protein phosphorylation modulators -------------------------------------------------------------------------- 31 Expression of disease associated hTau elicits axonal dilation phenotype ------ 33 Early expression of hyperphosphorylated Tau inhibits neuronal cell fate differentiation ---------------------------------------------------------------------- 35 Phosphorylation of hTau elongates fly life-span ---------------------------------- 35 Expression of hypophosphorylated hTauAP impaired neuronal development - 37 Neuronal expression of PP2A-B reduced dendritic complexity and shortened life-span of flies -------------------------------------------------------------------- 38 Overexpression of PP2A-B sustained cell apoptosis ----------------------------- 39 Knockdown of twins expression inhibited cell apoptosis ------------------------ 41 twins plays a role in promoting actin polymerization ---------------------------- 42 Overexpression of twins elicits phosphorylation of Cofilin, Ezrin and Myosin ------------------------------------------------------------------------------ 42 Depletion of twins retarded photoreceptor soma migration --------------------- 43 Discussion B regulatory subunits specify PP2A activity toward Tau in vivo ---------------- 45 Notum bristle loss phenotype is specified to Tau phosphorylation, rather than other neurotoxic proteins --------------------------------------------------- 45 The notum bristle assay system for assessment of Tau phosphorylation can be applied in pharmaceutical test ------------------------------------------------ 47 The limitation of the Tau expressing notum system ------------------------------ 47 ddaC nervous system can serve as an assay tool for assessing neurotoxic effect --------------------------------------------------------------------------------- 48 Hyperphosphorylated Tau might be neuroprotective and beneficial to adult fly nervous system ----------------------------------------------------------------- 49 Hyperphosphorylation of Tau is an adaptive response for nervous systems during inhospitable conditions --------------------------------------------------- 51 Overexpression of PR55Bβ2 over-dephosphorylating Tau might be one of the insults of SCA12 pathogenesis ---------------------------------------------- 52 Overexpression of PP2A-B potentially triggers apoptosis in vivo -------------- 53 Conclusion --------------------------------------------------------------------------------- 55 Reference ---------------------------------------------------------------------------------- 57 Figures and Legends Figure 1. twins expresses in the nervous system and functions equally to a human B subunit, PR55Bβ2. ----------------------------------------------------- 85 Figure 2. Overexpression of PR55Bβ2 with pan-neuronal driver shortens fly life-span. ---------------------------------------------------------------------------- 87 Figure 3. B subunits of PP2A dephosphorylated human tau protein in vivo. - 88 Figure 4. PR55Bβ2 did not show distinguishable rescue in traditional eye model with GMR-Gal4 driver. --------------------------------------------------- 90 Figure 5. Fly notum bristle number was diminished by hyperphosphorylated hTau expression and recovered by co-expressing B subunits of PP2A. ---- 91 Figure 6. GMR-GAL4 expression of only widerborst (WDB) shows severe rough eye phenotype. ------------------------------------------------------------- 93 Figure 7. Bristle loss caused by hTau expression is phosphorylation-dependent. ------------------------------------------------------ 94 Figure 8. Expression dosage analysis of fly stains carrying hTau variants constructs. --------------------------------------------------------------------------- 96 Figure 9. Eye phenotypes of hTau variants. ---------------------------------------- 97 Figure 10. Dominant negative GSK3β recovered bristle loss and attenuated hTau phosphorylation. ------------------------------------------------------------- 98 Figure 11. Heterozygously depletion of endogenous sgg also showed significant rescue of bristle loss on hTau expressing notum. ---------------- 100 Figure 12. Heterozygously depletion of endogenous Tau restored the bristle number on hTau expressing notum. --------------------------------------------- 102 Figure 13. Feeding with lithium chloride strongly inhibits phosphorylation of hTau but leads to toxicity for fly survival. ---------------------------------- 103 Figure 14. A more selective GSK3β inhibitor, alsterpaullone, rescued nota bristle loss on hTauWT expressing nota and elongated the life span of hTauR406W expressing flies. ------------------------------------------------------- 104 Figure 15. Expressions of disease associated hTau mutants lead to aberrant axon dilation in md-da neurons of the third instar larva. --------------------- 106 Figure 16. Aberrant axonal dilation induced by hTau expression is associated with twins. -------------------------------------------------------------------------- 107 Figure 17. Early expression of pseudophosphorylated hTauE14 inhibits neuronal cell fate differentiation. ------------------------------------------------ 108 Figure 18. Phosphorylation of Tau elongated fly life-span. ---------------------- 109 Figure 19. Expression of phosphorylation-incompetent hTauAP retarded dendritic outgrowth. --------------------------------------------------------------- 110 Figure 20. Neuronal expression of PR55Bβ2 reduced dendritic complexity and shortened life-span of flies. -------------------------------------------------- 111 Figure 21. Overexpression of PP2A-B promotes cell apoptosis in vivo. ------ 112 Figure 22. Depletion the expression of twins inhibits cell apoptosis resulting in accessing survival cells. ------------------------------------------------------- 114 Figure 23. twins positively regulates actin polymerization. --------------------- 116 Figure 24. Overexpression of twins elevated phosphorylation of polymerized-actin relevant proteins. -------------------------------------------- 117 Figure 25. twins is essential for photoreceptor soma migration. ---------------- 118 Figure 26. acu rescued malformed rhabdomere causing by twins overexpression. --------------------------------------------------------------------- 119

    Reference:
    Ainsley, J. A., Pettus, J. M., Bosenko, D., Gerstein, C. E., Zinkevich, N., Anderson, M. G., Adams, C. M., Welsh, M. J. and Johnson, W. A. (2003). Enhanced locomotion caused by loss of the Drosophila DEG/ENaC protein Pickpocket1. Curr Biol 13, 1557-63.
    Andorfer, C., Kress, Y., Espinoza, M., de Silva, R., Tucker, K. L., Barde, Y. A., Duff, K. and Davies, P. (2003). Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem 86, 582-90.
    Arendt, T., Stieler, J., Strijkstra, A. M., Hut, R. A., Rudiger, J., Van der Zee, E. A., Harkany, T., Holzer, M. and Hartig, W. (2003). Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J Neurosci 23, 6972-81.
    Bajpai, R., Makhijani, K., Rao, P. R. and Shashidhara, L. S. (2004). Drosophila Twins regulates Armadillo levels in response to Wg/Wnt signal. Development 131, 1007-16.
    Ballabh, P., Braun, A. and Nedergaard, M. (2004). The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16, 1-13.
    Barten, D. M. and Albright, C. F. (2008). Therapeutic strategies for Alzheimer's disease. Mol Neurobiol 37, 171-86.
    Beghin, A., Belin, S., Sleiman, R. H., Brunet Manquat, S., Goddard, S., Tabone, E., Jordheim, L. P., Treilleux, I., Poupon, M. F., Diaz, J. J. et al. (2009). ADP ribosylation factor like 2 (Arl2) regulates breast tumor aggressivity in immunodeficient mice. PLoS One 4, e7478.
    Benlali, A., Draskovic, I., Hazelett, D. J. and Treisman, J. E. (2000). act up controls actin polymerization to alter cell shape and restrict Hedgehog signaling in the Drosophila eye disc. Cell 101, 271-81.
    Biedler, J. L., Roffler-Tarlov, S., Schachner, M. and Freedman, L. S. (1978). Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38, 3751-7.
    Bodmer, R., Barbel, S., Sheperd, S., Jack, J. W., Jan, L. Y. and Jan, Y. N. (1987). Transformation of sensory organs by mutations of the cut locus of D. melanogaster. Cell 51, 293-307.
    Boulianne, G. L., de la Concha, A., Campos-Ortega, J. A., Jan, L. Y. and Jan, Y. N. (1991). The Drosophila neurogenic gene neuralized encodes a novel protein and is expressed in precursors of larval and adult neurons. Embo J 10, 2975-83.
    Bourouis, M. (2002). Targeted increase in shaggy activity levels blocks wingless signaling. Genesis 34, 99-102.
    Brachmann, C. B. and Cagan, R. L. (2003). Patterning the fly eye: the role of apoptosis. Trends Genet 19, 91-6.
    Brand, A. H. and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-15.
    Brandt, R., Gergou, A., Wacker, I., Fath, T. and Hutter, H. (2009). A Caenorhabditis elegans model of tau hyperphosphorylation: induction of developmental defects by transgenic overexpression of Alzheimer's disease-like modified tau. Neurobiol Aging 30, 22-33.
    Bretteville, A. and Planel, E. (2008). Tau aggregates: toxic, inert, or protective species? J Alzheimers Dis 14, 431-6.
    Brion, J. P., Octave, J. N. and Couck, A. M. (1994). Distribution of the phosphorylated microtubule-associated protein tau in developing cortical neurons. Neuroscience 63, 895-909.
    Broun, M., Gee, L., Reinhardt, B. and Bode, H. R. (2005). Formation of the head organizer in hydra involves the canonical Wnt pathway. Development 132, 2907-16.
    Bryant, J. C., Westphal, R. S. and Wadzinski, B. E. (1999). Methylated C-terminal leucine residue of PP2A catalytic subunit is important for binding of regulatory Balpha subunit. Biochem J 339 ( Pt 2), 241-6.
    Burkhardt, J. K., Carrizosa, E. and Shaffer, M. H. (2008). The actin cytoskeleton in T cell activation. Annu Rev Immunol 26, 233-59.
    Campbell, S., Inamdar, M., Rodrigues, V., Raghavan, V., Palazzolo, M. and Chovnick, A. (1992). The scalloped gene encodes a novel, evolutionarily conserved transcription factor required for sensory organ differentiation in Drosophila. Genes Dev 6, 367-79.
    Campos, A. R., Rosen, D. R., Robinow, S. N. and White, K. (1987). Molecular analysis of the locus elav in Drosophila melanogaster: a gene whose embryonic expression is neural specific. EMBO J 6, 425-31.
    Castellani, R. J., Nunomura, A., Lee, H. G., Perry, G. and Smith, M. A. (2008). Phosphorylated tau: toxic, protective, or none of the above. J Alzheimers Dis 14, 377-83.
    Cavaliere, V., Taddei, C. and Gargiulo, G. (1998). Apoptosis of nurse cells at the late stages of oogenesis of Drosophila melanogaster. Dev Genes Evol 208, 106-12.
    Chabu, C. and Doe, C. Q. (2009). Twins/PP2A regulates aPKC to control neuroblast cell polarity and self-renewal. Dev Biol 330, 399-405.
    Chatterjee, S., Sang, T. K., Lawless, G. M. and Jackson, G. R. (2009). Dissociation of tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a Drosophila model. Hum Mol Genet 18, 164-77.
    Chau, K. W., Chan, W. Y., Shaw, P. C. and Chan, H. Y. (2006). Biochemical investigation of Tau protein phosphorylation status and its solubility properties in Drosophila. Biochem Biophys Res Commun 346, 150-9.
    Chen, C. M., Hou, Y. T., Liu, J. Y., Wu, Y. R., Lin, C. H., Fung, H. C., Hsu, W. C., Hsu, Y., Lee, S. H., Hsieh-Li, H. M. et al. (2008). PPP2R2B CAG repeat length in the Han Chinese in Taiwan: Association analyses in neurological and psychiatric disorders and potential functional implications. Am J Med Genet B Neuropsychiatr Genet.
    Chen, F., Archambault, V., Kar, A., Lio, P., D'Avino, P. P., Sinka, R., Lilley, K., Laue, E. D., Deak, P., Capalbo, L. et al. (2007). Multiple protein phosphatases are required for mitosis in Drosophila. Curr Biol 17, 293-303.
    Chen, J., Martin, B. L. and Brautigan, D. L. (1992). Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science 257, 1261-4.
    Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C. and Hahn, W. C. (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5, 127-36.
    Chou, T. B., Noll, E. and Perrimon, N. (1993). Autosomal P[ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. Development 119, 1359-69.
    Congdon, E. E. and Duff, K. E. (2008). Is tau aggregation toxic or protective? J Alzheimers Dis 14, 453-7.
    Cormier, P., Osborne, H. B., Bassez, T., Poulhe, R., Belle, R. and Mulner-Lorillon, O. (1991). Protein phosphatase 2A from Xenopus oocytes. Characterization during meiotic cell division. FEBS Lett 295, 185-8.
    Dagda, R. K., Merrill, R. A., Cribbs, J. T., Chen, Y., Hell, J. W., Usachev, Y. M. and Strack, S. (2008). The spinocerebellar ataxia 12 gene product and protein phosphatase 2A regulatory subunit Bbeta2 antagonizes neuronal survival by promoting mitochondrial fission. J Biol Chem 283, 36241-8.
    Dagda, R. K., Zaucha, J. A., Wadzinski, B. E. and Strack, S. (2003). A developmentally regulated, neuron-specific splice variant of the variable subunit Bbeta targets protein phosphatase 2A to mitochondria and modulates apoptosis. J Biol Chem 278, 24976-85.
    Deak, P., Donaldson, M. and Glover, D. M. (2003). Mutations in makos, a Drosophila gene encoding the Cdc27 subunit of the anaphase promoting complex, enhance centrosomal defects in polo and are suppressed by mutations in twins/aar, which encodes a regulatory subunit of PP2A. J Cell Sci 116, 4147-58.
    Dobrowsky, R. T., Kamibayashi, C., Mumby, M. C. and Hannun, Y. A. (1993). Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem 268, 15523-30.
    Dohlinger, S., Hauser, T. K., Borkert, J., Luft, A. R. and Schulz, J. B. (2008). Magnetic resonance imaging in spinocerebellar ataxias. Cerebellum 7, 204-14.
    Drewes, G. (2004). MARKing tau for tangles and toxicity. Trends Biochem Sci 29, 548-55.
    Eaton, S. (2003). Cell biology of planar polarity transmission in the Drosophila wing. Mech Dev 120, 1257-64.
    Eichhorn, P. J., Creyghton, M. P. and Bernards, R. (2009). Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta 1795, 1-15.
    Eldar-Finkelman, H., Argast, G. M., Foord, O., Fischer, E. H. and Krebs, E. G. (1996). Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells. Proc Natl Acad Sci U S A 93, 10228-33.
    Favre, B., Turowski, P. and Hemmings, B. A. (1997). Differential inhibition and posttranslational modification of protein phosphatase 1 and 2A in MCF7 cells treated with calyculin-A, okadaic acid, and tautomycin. J Biol Chem 272, 13856-63.
    Ferreira, A., Busciglio, J. and Caceres, A. (1989). Microtubule formation and neurite growth in cerebellar macroneurons which develop in vitro: evidence for the involvement of the microtubule-associated proteins, MAP-1a, HMW-MAP2 and Tau. Brain Res Dev Brain Res 49, 215-28.
    Ferri, C. P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., Hall, K., Hasegawa, K., Hendrie, H., Huang, Y. et al. (2005). Global prevalence of dementia: a Delphi consensus study. Lancet 366, 2112-7.
    Frerichs, K. U. and Hallenbeck, J. M. (1998). Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia: an in vitro study in hippocampal slices. J Cereb Blood Flow Metab 18, 168-75.
    Fujiki, H. and Suganuma, M. (1993). Tumor promotion by inhibitors of protein phosphatases 1 and 2A: the okadaic acid class of compounds. Adv Cancer Res 61, 143-94.
    Fulga, T. A., Elson-Schwab, I., Khurana, V., Steinhilb, M. L., Spires, T. L., Hyman, B. T. and Feany, M. B. (2007). Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 9, 139-48.
    Furtado, S., Das, S. and Suchowersky, O. (1998). A review of the inherited ataxias: recent advances in genetic, clinical and neuropathologic aspects. Parkinsonism Relat Disord 4, 161-9.
    Goedert, M., Jakes, R., Crowther, R. A., Six, J., Lubke, U., Vandermeeren, M., Cras, P., Trojanowski, J. Q. and Lee, V. M. (1993). The abnormal phosphorylation of tau protein at Ser-202 in Alzheimer disease recapitulates phosphorylation during development. Proc Natl Acad Sci U S A 90, 5066-70.
    Goedert, M., Jakes, R., Qi, Z., Wang, J. H. and Cohen, P. (1995). Protein phosphatase 2A is the major enzyme in brain that dephosphorylates tau protein phosphorylated by proline-directed protein kinases or cyclic AMP-dependent protein kinase. J Neurochem 65, 2804-7.
    Goedert, M. and Spillantini, M. G. (2006). A century of Alzheimer's disease. Science 314, 777-81.
    Gomes, R., Karess, R. E., Ohkura, H., Glover, D. M. and Sunkel, C. E. (1993). Abnormal anaphase resolution (aar): a locus required for progression through mitosis in Drosophila. J Cell Sci 104 ( Pt 2), 583-93.
    Gomez-Isla, T., Hollister, R., West, H., Mui, S., Growdon, J. H., Petersen, R. C., Parisi, J. E. and Hyman, B. T. (1997). Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease. Ann Neurol 41, 17-24.
    Gomez-Ramos, A., Diaz-Nido, J., Smith, M. A., Perry, G. and Avila, J. (2003). Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. J Neurosci Res 71, 863-70.
    Gotz, J. and Ittner, L. M. (2008). Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci 9, 532-44.
    Gotz, J., Ittner, L. M., Fandrich, M. and Schonrock, N. (2008). Is tau aggregation toxic or protective: a sensible question in the absence of sensitive methods? J Alzheimers Dis 14, 423-9.
    Hannus, M., Feiguin, F., Heisenberg, C. P. and Eaton, S. (2002). Planar cell polarization requires Widerborst, a B' regulatory subunit of protein phosphatase 2A. Development 129, 3493-503.
    Hartig, W., Stieler, J., Boerema, A. S., Wolf, J., Schmidt, U., Weissfuss, J., Bullmann, T., Strijkstra, A. M. and Arendt, T. (2007). Hibernation model of tau phosphorylation in hamsters: selective vulnerability of cholinergic basal forebrain neurons - implications for Alzheimer's disease. Eur J Neurosci 25, 69-80.
    Hasegawa, M., Smith, M. J. and Goedert, M. (1998). Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly. FEBS Lett 437, 207-10.
    Hastie, C. J. and Cohen, P. T. (1998). Purification of protein phosphatase 4 catalytic subunit: inhibition by the antitumour drug fostriecin and other tumour suppressors and promoters. FEBS Lett 431, 357-61.
    Hay, B. A., Wolff, T. and Rubin, G. M. (1994). Expression of baculovirus P35 prevents cell death in Drosophila. Development 120, 2121-9.
    Haystead, T. A., Sim, A. T., Carling, D., Honnor, R. C., Tsukitani, Y., Cohen, P. and Hardie, D. G. (1989). Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature 337, 78-81.
    Hegde, A. N. and Upadhya, S. C. (2007). The ubiquitin-proteasome pathway in health and disease of the nervous system. Trends Neurosci 30, 587-95.
    Heininger, K. (2000). A unifying hypothesis of Alzheimer's disease. IV. Causation and sequence of events. Rev Neurosci 11 Spec No, 213-328.
    Hemmings, B. A., Adams-Pearson, C., Maurer, F., Muller, P., Goris, J., Merlevede, W., Hofsteenge, J. and Stone, S. R. (1990). alpha- and beta-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry 29, 3166-73.
    Hendrix, P., Mayer-Jackel, R. E., Cron, P., Goris, J., Hofsteenge, J., Merlevede, W. and Hemmings, B. A. (1993). Structure and expression of a 72-kDa regulatory subunit of protein phosphatase 2A. Evidence for different size forms produced by alternative splicing. J Biol Chem 268, 15267-76.
    Higuchi, M., Ishihara, T., Zhang, B., Hong, M., Andreadis, A., Trojanowski, J. and Lee, V. M. (2002). Transgenic mouse model of tauopathies with glial pathology and nervous system degeneration. Neuron 35, 433-46.
    Holmes, C. F., Luu, H. A., Carrier, F. and Schmitz, F. J. (1990). Inhibition of protein phosphatases-1 and -2A with acanthifolicin. Comparison with diarrhetic shellfish toxins and identification of a region on okadaic acid important for phosphatase inhibition. FEBS Lett 270, 216-8.
    Holmes, S. E., O'Hearn, E. E., McInnis, M. G., Gorelick-Feldman, D. A., Kleiderlein, J. J., Callahan, C., Kwak, N. G., Ingersoll-Ashworth, R. G., Sherr, M., Sumner, A. J. et al. (1999). Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nat Genet 23, 391-2.
    Hong, M., Chen, D. C., Klein, P. S. and Lee, V. M. (1997). Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem 272, 25326-32.
    Huber, J. D., Egleton, R. D. and Davis, T. P. (2001). Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci 24, 719-25.
    Hundelt, M., Fath, T., Selle, K., Oesterwind, K., Jordan, J., Schultz, C., Gotz, J., von Engelhardt, J., Monyer, H., Lewejohann, L. et al. (2009). Altered phosphorylation but no neurodegeneration in a mouse model of tau hyperphosphorylation. Neurobiol Aging.
    Hutton, M., Lendon, C. L., Rizzu, P., Baker, M., Froelich, S., Houlden, H., Pickering-Brown, S., Chakraverty, S., Isaacs, A., Grover, A. et al. (1998). Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702-5.
    Ihara, Y. (2001). PHF and PHF-like fibrils--cause or consequence? Neurobiol Aging 22, 123-6.
    Ikeda, Y., Ishiguro, K. and Fujita, S. C. (2007). Ether stress-induced Alzheimer-like tau phosphorylation in the normal mouse brain. FEBS Lett 581, 891-7.
    Ishiguro, K., Shiratsuchi, A., Sato, S., Omori, A., Arioka, M., Kobayashi, S., Uchida, T. and Imahori, K. (1993). Glycogen synthase kinase 3 beta is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett 325, 167-72.
    Jackson, G. R., Wiedau-Pazos, M., Sang, T. K., Wagle, N., Brown, C. A., Massachi, S. and Geschwind, D. H. (2002). Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34, 509-19.
    Jackson, J. L. and Young, M. R. (2002). Protein phosphatase-2A modulates the serine and tyrosine phosphorylation of paxillin in Lewis lung carcinoma tumor variants. Clin Exp Metastasis 19, 409-15.
    Janssens, V. and Goris, J. (2001). Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353, 417-39.
    Janssens, V., Goris, J. and Van Hoof, C. (2005). PP2A: the expected tumor suppressor. Curr Opin Genet Dev 15, 34-41.
    Janssens, V., Jordens, J., Stevens, I., Van Hoof, C., Martens, E., De Smedt, H., Engelborghs, Y., Waelkens, E. and Goris, J. (2003). Identification and functional analysis of two Ca2+-binding EF-hand motifs in the B"/PR72 subunit of protein phosphatase 2A. J Biol Chem 278, 10697-706.
    Jiang, Y. (2006). Regulation of the cell cycle by protein phosphatase 2A in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70, 440-9.
    Junttila, M. R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., Bottzauw, T., Ala-aho, R., Nielsen, C., Ivaska, J., Taya, Y. et al. (2007). CIP2A inhibits PP2A in human malignancies. Cell 130, 51-62.
    Kao, G., Tuck, S., Baillie, D. and Sundaram, M. V. (2004). C. elegans SUR-6/PR55 cooperates with LET-92/protein phosphatase 2A and promotes Raf activity independently of inhibitory Akt phosphorylation sites. Development 131, 755-65.
    Khew-Goodall, Y. and Hemmings, B. A. (1988). Tissue-specific expression of mRNAs encoding alpha- and beta-catalytic subunits of protein phosphatase 2A. FEBS Lett 238, 265-8.
    Kinoshita, K., Nemoto, T., Nabeshima, K., Kondoh, H., Niwa, H. and Yanagida, M. (1996). The regulatory subunits of fission yeast protein phosphatase 2A (PP2A) affect cell morphogenesis, cell wall synthesis and cytokinesis. Genes Cells 1, 29-45.
    Korneyev, A., Binder, L. and Bernardis, J. (1995). Rapid reversible phosphorylation of rat brain tau proteins in response to cold water stress. Neurosci Lett 191, 19-22.
    Kosik, K. S., Joachim, C. L. and Selkoe, D. J. (1986). Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A 83, 4044-8.
    Kothakota, S., Azuma, T., Reinhard, C., Klippel, A., Tang, J., Chu, K., McGarry, T. J., Kirschner, M. W., Koths, K., Kwiatkowski, D. J. et al. (1997). Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278, 294-8.
    Kraemer, B. C. and Schellenberg, G. D. (2007). SUT-1 enables tau-induced neurotoxicity in C. elegans. Hum Mol Genet 16, 1959-71.
    Kramer, J. M. and Staveley, B. E. (2003). GAL4 causes developmental defects and apoptosis when expressed in the developing eye of Drosophila melanogaster. Genet Mol Res 2, 43-7.
    Lai, E. C. and Rubin, G. M. (2001). Neuralized is essential for a subset of Notch pathway-dependent cell fate decisions during Drosophila eye development. Proc Natl Acad Sci U S A 98, 5637-42.
    Lee, A. and Treisman, J. E. (2004). Excessive Myosin activity in mbs mutants causes photoreceptor movement out of the Drosophila eye disc epithelium. Mol Biol Cell 15, 3285-95.
    Lee, H. G., Perry, G., Moreira, P. I., Garrett, M. R., Liu, Q., Zhu, X., Takeda, A., Nunomura, A. and Smith, M. A. (2005). Tau phosphorylation in Alzheimer's disease: pathogen or protector? Trends Mol Med 11, 164-9.
    Lee, Y. S. and Carthew, R. W. (2003). Making a better RNAi vector for Drosophila: use of intron spacers. Methods 30, 322-9.
    Leira, F., Alvarez, C., Vieites, J. M., Vieytes, M. R. and Botana, L. M. (2001). Study of cytoskeletal changes induced by okadaic acid in BE(2)-M17 cells by means of a quantitative fluorimetric microplate assay. Toxicol In Vitro 15, 277-82.
    Leost, M., Schultz, C., Link, A., Wu, Y. Z., Biernat, J., Mandelkow, E. M., Bibb, J. A., Snyder, G. L., Greengard, P., Zaharevitz, D. W. et al. (2000). Paullones are potent inhibitors of glycogen synthase kinase-3beta and cyclin-dependent kinase 5/p25. Eur J Biochem 267, 5983-94.
    Lesort, M., Blanchard, C., Yardin, C., Esclaire, F. and Hugon, J. (1997). Cultured neurons expressing phosphorylated tau are more resistant to apoptosis induced by NMDA or serum deprivation. Brain Res Mol Brain Res 45, 127-32.
    Li, H. L., Wang, H. H., Liu, S. J., Deng, Y. Q., Zhang, Y. J., Tian, Q., Wang, X. C., Chen, X. Q., Yang, Y., Zhang, J. Y. et al. (2007). Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer's neurodegeneration. Proc Natl Acad Sci U S A 104, 3591-6.
    Li, M., Guo, H. and Damuni, Z. (1995). Purification and characterization of two potent heat-stable protein inhibitors of protein phosphatase 2A from bovine kidney. Biochemistry 34, 1988-96.
    Litersky, J. M. and Johnson, G. V. (1992). Phosphorylation by cAMP-dependent protein kinase inhibits the degradation of tau by calpain. J Biol Chem 267, 1563-8.
    Liu, R., Zhou, X. W., Tanila, H., Bjorkdahl, C., Wang, J. Z., Guan, Z. Z., Cao, Y., Gustafsson, J. A., Winblad, B. and Pei, J. J. (2008). Phosphorylated PP2A (tyrosine 307) is associated with Alzheimer neurofibrillary pathology. J Cell Mol Med 12, 241-57.
    Llinas, R. and Hess, R. (1976). Tetrodotoxin-resistant dendritic spikes in avian Purkinje cells. Proc Natl Acad Sci U S A 73, 2520-3.
    Lu, B. and Vogel, H. (2008). Drosophila Models of Neurodegenerative Diseases. Annu Rev Pathol.
    Macias-Silva, M. and Garcia-Sainz, J. A. (1994). Inhibition of hormone-stimulated inositol phosphate production and disruption of cytoskeletal structure. Effects of okadaic acid, microcystin, chlorpromazine, W7 and nystatin. Toxicon 32, 105-12.
    MacKintosh, C., Beattie, K. A., Klumpp, S., Cohen, P. and Codd, G. A. (1990a). Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264, 187-92.
    MacKintosh, C. and Klumpp, S. (1990). Tautomycin from the bacterium Streptomyces verticillatus. Another potent and specific inhibitor of protein phosphatases 1 and 2A. FEBS Lett 277, 137-40.
    MacKintosh, R. W., Haycox, G., Hardie, D. G. and Cohen, P. T. (1990b). Identification by molecular cloning of two cDNA sequences from the plant Brassica napus which are very similar to mammalian protein phosphatases-1 and -2A. FEBS Lett 276, 156-60.
    Marsh, J. L. and Thompson, L. M. (2006). Drosophila in the study of neurodegenerative disease. Neuron 52, 169-78.
    Matre, P., Meyer, C. and Lillo, C. (2009). Diversity in subcellular targeting of the PP2A B'eta subfamily members. Planta 230, 935-45.
    Mayer-Jaekel, R. E., Baumgartner, S., Bilbe, G., Ohkura, H., Glover, D. M. and Hemmings, B. A. (1992). Molecular cloning and developmental expression of the catalytic and 65-kDa regulatory subunits of protein phosphatase 2A in Drosophila. Mol Biol Cell 3, 287-98.
    Mayer-Jaekel, R. E., Ohkura, H., Gomes, R., Sunkel, C. E., Baumgartner, S., Hemmings, B. A. and Glover, D. M. (1993). The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell 72, 621-33.
    Mayer, R. E., Hendrix, P., Cron, P., Matthies, R., Stone, S. R., Goris, J., Merlevede, W., Hofsteenge, J. and Hemmings, B. A. (1991). Structure of the 55-kDa regulatory subunit of protein phosphatase 2A: evidence for a neuronal-specific isoform. Biochemistry 30, 3589-97.
    McCall, K. (2004). Eggs over easy: cell death in the Drosophila ovary. Dev Biol 274, 3-14.
    McGuire, S. E., Roman, G. and Davis, R. L. (2004). Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet 20, 384-91.
    Mena, R., Wischik, C. M., Novak, M., Milstein, C. and Cuello, A. C. (1991). A progressive deposition of paired helical filaments (PHF) in the brain characterizes the evolution of dementia in Alzheimer's disease. An immunocytochemical study with a monoclonal antibody against the PHF core. J Neuropathol Exp Neurol 50, 474-90.
    Menzel, D., Vugrek, O., Frank, S. and Elsner-Menzel, C. (1995). Protein phosphatase 2A, a potential regulator of actin dynamics and actin-based organelle motility in the green alga Acetabularia. Eur J Cell Biol 67, 179-87.
    Merdes, G., Soba, P., Loewer, A., Bilic, M. V., Beyreuther, K. and Paro, R. (2004). Interference of human and Drosophila APP and APP-like proteins with PNS development in Drosophila. Embo J 23, 4082-95.
    Millward, T. A., Zolnierowicz, S. and Hemmings, B. A. (1999). Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci 24, 186-91.
    Minshull, J., Straight, A., Rudner, A. D., Dernburg, A. F., Belmont, A. and Murray, A. W. (1996). Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast. Curr Biol 6, 1609-20.
    Miyasaka, T., Ding, Z., Gengyo-Ando, K., Oue, M., Yamaguchi, H., Mitani, S. and Ihara, Y. (2005). Progressive neurodegeneration in C. elegans model of tauopathy. Neurobiol Dis 20, 372-83.
    Morishima-Kawashima, M., Hasegawa, M., Takio, K., Suzuki, M., Yoshida, H., Watanabe, A., Titani, K. and Ihara, Y. (1995). Hyperphosphorylation of tau in PHF. Neurobiol Aging 16, 365-71; discussion 371-80.
    Morsch, R., Simon, W. and Coleman, P. D. (1999). Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 58, 188-97.
    Niggli, V., Djafarzadeh, S. and Keller, H. (1999). Stimulus-induced selective association of actin-associated proteins (alpha-actinin) and protein kinase C isoforms with the cytoskeleton of human neutrophils. Exp Cell Res 250, 558-68.
    Nikolaev, A., McLaughlin, T., O'Leary, D. D. and Tessier-Lavigne, M. (2009). APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457, 981-9.
    Nishikawa, M., Toyoda, H., Saito, M., Morita, K., Tawara, I., Deguchi, K., Kuno, T., Shima, H., Nagao, M. and Shirakawa, S. (1994). Calyculin A and okadiac acid inhibit human platelet aggregation by blocking protein phosphatases types 1 and 2A. Cell Signal 6, 59-71.
    Nishimura, I., Yang, Y. and Lu, B. (2004). PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell 116, 671-82.
    Nunbhakdi-Craig, V., Craig, L., Machleidt, T. and Sontag, E. (2003). Simian virus 40 small tumor antigen induces deregulation of the actin cytoskeleton and tight junctions in kidney epithelial cells. J Virol 77, 2807-18.
    Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E. K., Jones, P. K., Ghanbari, H., Wataya, T., Shimohama, S. et al. (2001). Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60, 759-67.
    Ogawa, M., Fukuyama, H., Ouchi, Y., Yamauchi, H. and Kimura, J. (1996). Altered energy metabolism in Alzheimer's disease. J Neurol Sci 139, 78-82.
    Okawa, Y., Ishiguro, K. and Fujita, S. C. (2003). Stress-induced hyperphosphorylation of tau in the mouse brain. FEBS Lett 535, 183-9.
    Padmanabhan, S., Mukhopadhyay, A., Narasimhan, S. D., Tesz, G., Czech, M. P. and Tissenbaum, H. A. (2009). A PP2A regulatory subunit regulates C. elegans insulin/IGF-1 signaling by modulating AKT-1 phosphorylation. Cell 136, 939-51.
    Pallas, D. C., Shahrik, L. K., Martin, B. L., Jaspers, S., Miller, T. B., Brautigan, D. L. and Roberts, T. M. (1990). Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell 60, 167-76.
    Paulson, H. L. (2009). The spinocerebellar ataxias. J Neuroophthalmol 29, 227-37.
    Pi, H., Wu, H. J. and Chien, C. T. (2001). A dual function of phyllopod in Drosophila external sensory organ development: cell fate specification of sensory organ precursor and its progeny. Development 128, 2699-710.
    Planel, E., Miyasaka, T., Launey, T., Chui, D. H., Tanemura, K., Sato, S., Murayama, O., Ishiguro, K., Tatebayashi, Y. and Takashima, A. (2004). Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: implications for Alzheimer's disease. J Neurosci 24, 2401-11.
    Planel, E., Yasutake, K., Fujita, S. C. and Ishiguro, K. (2001). Inhibition of protein phosphatase 2A overrides tau protein kinase I/glycogen synthase kinase 3 beta and cyclin-dependent kinase 5 inhibition and results in tau hyperphosphorylation in the hippocampus of starved mouse. J Biol Chem 276, 34298-306.
    Poppek, D., Keck, S., Ermak, G., Jung, T., Stolzing, A., Ullrich, O., Davies, K. J. and Grune, T. (2006). Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress. Biochem J 400, 511-20.
    Ready, D. F., Hanson, T. E. and Benzer, S. (1976). Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53, 217-40.
    Roberson, E. D. and Mucke, L. (2006). 100 years and counting: prospects for defeating Alzheimer's disease. Science 314, 781-4.
    Robinson, D. N. and Cooley, L. (1997). Genetic analysis of the actin cytoskeleton in the Drosophila ovary. Annu Rev Cell Dev Biol 13, 147-70.
    Rodriguez, P. L. (1998). Protein phosphatase 2C (PP2C) function in higher plants. Plant Mol Biol 38, 919-27.
    Roopchand, D. E., Lee, J. M., Shahinian, S., Paquette, D., Bussey, H. and Branton, P. E. (2001). Toxicity of human adenovirus E4orf4 protein in Saccharomyces cerevisiae results from interactions with the Cdc55 regulatory B subunit of PP2A. Oncogene 20, 5279-90.
    Rosner, H., Rebhan, M., Vacun, G. and Vanmechelen, E. (1994). Expression of a paired helical filament tau epitope in embryonic chicken central nervous system. Neuroreport 5, 1164-6.
    Rusconi, J. C., Hays, R. and Cagan, R. L. (2000). Programmed cell death and patterning in Drosophila. Cell Death Differ 7, 1063-70.
    Sablina, A. A., Chen, W., Arroyo, J. D., Corral, L., Hector, M., Bulmer, S. E., DeCaprio, J. A. and Hahn, W. C. (2007). The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell 129, 969-82.
    Santoro, M. F., Annand, R. R., Robertson, M. M., Peng, Y. W., Brady, M. J., Mankovich, J. A., Hackett, M. C., Ghayur, T., Walter, G., Wong, W. W. et al. (1998). Regulation of protein phosphatase 2A activity by caspase-3 during apoptosis. J Biol Chem 273, 13119-28.
    Saraf, A., Virshup, D. M. and Strack, S. (2007). Differential expression of the B'beta regulatory subunit of protein phosphatase 2A modulates tyrosine hydroxylase phosphorylation and catecholamine synthesis. J Biol Chem 282, 573-80.
    Sathyanarayanan, S., Zheng, X., Xiao, R. and Sehgal, A. (2004). Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell 116, 603-15.
    Schmidt, K., Kins, S., Schild, A., Nitsch, R. M., Hemmings, B. A. and Gotz, J. (2002). Diversity, developmental regulation and distribution of murine PR55/B subunits of protein phosphatase 2A. Eur J Neurosci 16, 2039-48.
    Schmidt, M. L., Lee, V. M. and Trojanowski, J. Q. (1990). Relative abundance of tau and neurofilament epitopes in hippocampal neurofibrillary tangles. Am J Pathol 136, 1069-75.
    Selenica, M. L., Jensen, H. S., Larsen, A. K., Pedersen, M. L., Helboe, L., Leist, M. and Lotharius, J. (2007). Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation. Br J Pharmacol 152, 959-79.
    Sereno, L., Coma, M., Rodriguez, M., Sanchez-Ferrer, P., Sanchez, M. B., Gich, I., Agullo, J. M., Perez, M., Avila, J., Guardia-Laguarta, C. et al. (2009). A novel GSK-3beta inhibitor reduces Alzheimer's pathology and rescues neuronal loss in vivo. Neurobiol Dis 35, 359-67.
    Shaw, A. E., Minamide, L. S., Bill, C. L., Funk, J. D., Maiti, S. and Bamburg, J. R. (2004). Cross-reactivity of antibodies to actin- depolymerizing factor/cofilin family proteins and identification of the major epitope recognized by a mammalian actin-depolymerizing factor/cofilin antibody. Electrophoresis 25, 2611-20.
    Shi, Y. (2009). Assembly and structure of protein phosphatase 2A. Sci China C Life Sci 52, 135-46.
    Shiomi, K., Takeichi, M., Nishida, Y., Nishi, Y. and Uemura, T. (1994). Alternative cell fate choice induced by low-level expression of a regulator of protein phosphatase 2A in the Drosophila peripheral nervous system. Development 120, 1591-9.
    Shtrichman, R., Sharf, R., Barr, H., Dobner, T. and Kleinberger, T. (1999). Induction of apoptosis by adenovirus E4orf4 protein is specific to transformed cells and requires an interaction with protein phosphatase 2A. Proc Natl Acad Sci U S A 96, 10080-5.
    Shulman, J. M. and Feany, M. B. (2003). Genetic modifiers of tauopathy in Drosophila. Genetics 165, 1233-42.
    Silverstein, A. M., Barrow, C. A., Davis, A. J. and Mumby, M. C. (2002). Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. Proc Natl Acad Sci U S A 99, 4221-6.
    Smith, M. A., Casadesus, G., Joseph, J. A. and Perry, G. (2002). Amyloid-beta and tau serve antioxidant functions in the aging and Alzheimer brain. Free Radic Biol Med 33, 1194-9.
    Smith, M. A., Rottkamp, C. A., Nunomura, A., Raina, A. K. and Perry, G. (2000). Oxidative stress in Alzheimer's disease. Biochim Biophys Acta 1502, 139-44.
    Smits, P. H., Smits, H. L., Minnaar, R. P., Hemmings, B. A., Mayer-Jaekel, R. E., Schuurman, R., van der Noordaa, J. and ter Schegget, J. (1992). The 55 kDa regulatory subunit of protein phosphatase 2A plays a role in the activation of the HPV16 long control region in human cells with a deletion in the short arm of chromosome 11. Embo J 11, 4601-6.
    Snaith, H. A., Armstrong, C. G., Guo, Y., Kaiser, K. and Cohen, P. T. (1996). Deficiency of protein phosphatase 2A uncouples the nuclear and centrosome cycles and prevents attachment of microtubules to the kinetochore in Drosophila microtubule star (mts) embryos. J Cell Sci 109 ( Pt 13), 3001-12.
    Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M. and Mumby, M. (1993). The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell 75, 887-97.
    Sontag, E., Nunbhakdi-Craig, V., Lee, G., Bloom, G. S. and Mumby, M. C. (1996). Regulation of the phosphorylation state and microtubule-binding activity of Tau by protein phosphatase 2A. Neuron 17, 1201-7.
    Sontag, E., Nunbhakdi-Craig, V., Lee, G., Brandt, R., Kamibayashi, C., Kuret, J., White, C. L., 3rd, Mumby, M. C. and Bloom, G. S. (1999). Molecular interactions among protein phosphatase 2A, tau, and microtubules. Implications for the regulation of tau phosphorylation and the development of tauopathies. J Biol Chem 274, 25490-8.
    Sontag, J. M. and Sontag, E. (2006). Regulation of cell adhesion by PP2A and SV40 small tumor antigen: an important link to cell transformation. Cell Mol Life Sci 63, 2979-91.
    Spillantini, M. G., Goedert, M., Crowther, R. A., Murrell, J. R., Farlow, M. R. and Ghetti, B. (1997). Familial multiple system tauopathy with presenile dementia: a disease with abundant neuronal and glial tau filaments. Proc Natl Acad Sci U S A 94, 4113-8.
    Spittaels, K., Van den Haute, C., Van Dorpe, J., Geerts, H., Mercken, M., Bruynseels, K., Lasrado, R., Vandezande, K., Laenen, I., Boon, T. et al. (2000). Glycogen synthase kinase-3beta phosphorylates protein tau and rescues the axonopathy in the central nervous system of human four-repeat tau transgenic mice. J Biol Chem 275, 41340-9.
    Steffan, J. S., Agrawal, N., Pallos, J., Rockabrand, E., Trotman, L. C., Slepko, N., Illes, K., Lukacsovich, T., Zhu, Y. Z., Cattaneo, E. et al. (2004). SUMO modification of Huntingtin and Huntington's disease pathology. Science 304, 100-4.
    Stone, S. R., Hofsteenge, J. and Hemmings, B. A. (1987). Molecular cloning of cDNAs encoding two isoforms of the catalytic subunit of protein phosphatase 2A. Biochemistry 26, 7215-20.
    Strack, S., Ruediger, R., Walter, G., Dagda, R. K., Barwacz, C. A. and Cribbs, J. T. (2002). Protein phosphatase 2A holoenzyme assembly: identification of contacts between B-family regulatory and scaffolding A subunits. J Biol Chem 277, 20750-5.
    Strack, S., Zaucha, J. A., Ebner, F. F., Colbran, R. J. and Wadzinski, B. E. (1998). Brain protein phosphatase 2A: developmental regulation and distinct cellular and subcellular localization by B subunits. J Comp Neurol 392, 515-27.
    Su, B., Wang, X., Drew, K. L., Perry, G., Smith, M. A. and Zhu, X. (2008). Physiological regulation of tau phosphorylation during hibernation. J Neurochem.
    Suganuma, M., Fujiki, H., Suguri, H., Yoshizawa, S., Hirota, M., Nakayasu, M., Ojika, M., Wakamatsu, K., Yamada, K. and Sugimura, T. (1988). Okadaic acid: an additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter. Proc Natl Acad Sci U S A 85, 1768-71.
    Suganuma, M., Okabe, S., Sueoka, E., Nishiwaki, R., Komori, A., Uda, N., Isono, K. and Fujiki, H. (1995). Tautomycin: an inhibitor of protein phosphatases 1 and 2A but not a tumor promoter on mouse skin and in rat glandular stomach. J Cancer Res Clin Oncol 121, 621-7.
    Takadera, T., Yoshikawa, R. and Ohyashiki, T. (2006). Thapsigargin-induced apoptosis was prevented by glycogen synthase kinase-3 inhibitors in PC12 cells. Neurosci Lett 408, 124-8.
    Takashima, A. (2006). GSK-3 is essential in the pathogenesis of Alzheimer's disease. J Alzheimers Dis 9, 309-17.
    Takashima, A., Noguchi, K., Sato, K., Hoshino, T. and Imahori, K. (1993). Tau protein kinase I is essential for amyloid beta-protein-induced neurotoxicity. Proc Natl Acad Sci U S A 90, 7789-93.
    Takeda, A., Smith, M. A., Avila, J., Nunomura, A., Siedlak, S. L., Zhu, X., Perry, G. and Sayre, L. M. (2000). In Alzheimer's disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification. J Neurochem 75, 1234-41.
    Takemoto, A., Maeshima, K., Ikehara, T., Yamaguchi, K., Murayama, A., Imamura, S., Imamoto, N., Yokoyama, S., Hirano, T., Watanabe, Y. et al. (2009). The chromosomal association of condensin II is regulated by a noncatalytic function of PP2A. Nat Struct Mol Biol.
    Tang, C. Y. and Sun, Y. H. (2002). Use of mini-white as a reporter gene to screen for GAL4 insertions with spatially restricted expression pattern in the developing eye in drosophila. Genesis 34, 39-45.
    Tanimukai, H., Grundke-Iqbal, I. and Iqbal, K. (2005). Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer's disease. Am J Pathol 166, 1761-71.
    Tessier, C. R. and Broadie, K. (2008). Drosophila fragile X mental retardation protein developmentally regulates activity-dependent axon pruning. Development 135, 1547-57.
    Todd, A. M. and Staveley, B. E. (2008). Pink1 suppresses alpha-synuclein-induced phenotypes in a Drosophila model of Parkinson's disease. Genome 51, 1040-6.
    Uemura, T., Shiomi, K., Togashi, S. and Takeichi, M. (1993). Mutation of twins encoding a regulator of protein phosphatase 2A leads to pattern duplication in Drosophila imaginal discs. Genes Dev 7, 429-40.
    Vale, C. and Botana, L. M. (2008). Marine toxins and the cytoskeleton: okadaic acid and dinophysistoxins. FEBS J 275, 6060-6.
    Van Hoof, C. and Goris, J. (2003). Phosphatases in apoptosis: to be or not to be, PP2A is in the heart of the question. Biochim Biophys Acta 1640, 97-104.
    Van Hoof, C., Ingels, F., Cayla, X., Stevens, I., Merlevede, W. and Goris, J. (1995). Molecular cloning and developmental regulation of expression of two isoforms of the catalytic subunit of protein phosphatase 2A from Xenopus laevis. Biochem Biophys Res Commun 215, 666-73.
    Viquez, N. M., Li, C. R., Wairkar, Y. P. and DiAntonio, A. (2006). The B' protein phosphatase 2A regulatory subunit well-rounded regulates synaptic growth and cytoskeletal stability at the Drosophila neuromuscular junction. J Neurosci 26, 9293-303.
    Vogelsberg-Ragaglia, V., Schuck, T., Trojanowski, J. Q. and Lee, V. M. (2001). PP2A mRNA expression is quantitatively decreased in Alzheimer's disease hippocampus. Exp Neurol 168, 402-12.
    Walter, G., Ruediger, R., Slaughter, C. and Mumby, M. (1990). Association of protein phosphatase 2A with polyoma virus medium tumor antigen. Proc Natl Acad Sci U S A 87, 2521-5.
    Watanabe, A., Hasegawa, M., Suzuki, M., Takio, K., Morishima-Kawashima, M., Titani, K., Arai, T., Kosik, K. S. and Ihara, Y. (1993). In vivo phosphorylation sites in fetal and adult rat tau. J Biol Chem 268, 25712-7.
    Weinshenker, D. (2008). Functional consequences of locus coeruleus degeneration in Alzheimer's disease. Curr Alzheimer Res 5, 342-5.
    Westermarck, J. and Hahn, W. C. (2008). Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol Med 14, 152-60.
    Wittmann, C. W., Wszolek, M. F., Shulman, J. M., Salvaterra, P. M., Lewis, J., Hutton, M. and Feany, M. B. (2001). Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293, 711-4.
    Wolff, T. and Ready, D. F. (1991). Cell death in normal and rough eye mutants of Drosophila. Development 113, 825-39.
    Wu, J., Tolstykh, T., Lee, J., Boyd, K., Stock, J. B. and Broach, J. R. (2000). Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo. EMBO J 19, 5672-81.
    Xu, T. and Rubin, G. M. (1993). Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223-37.
    Xu, Y., Xing, Y., Chen, Y., Chao, Y., Lin, Z., Fan, E., Yu, J. W., Strack, S., Jeffrey, P. D. and Shi, Y. (2006). Structure of the protein phosphatase 2A holoenzyme. Cell 127, 1239-51.
    Yanagisawa, M., Planel, E., Ishiguro, K. and Fujita, S. C. (1999). Starvation induces tau hyperphosphorylation in mouse brain: implications for Alzheimer's disease. FEBS Lett 461, 329-33.
    Yano, Y., Sakon, M., Kambayashi, J., Kawasaki, T., Senda, T., Tanaka, K., Yamada, F. and Shibata, N. (1995). Cytoskeletal reorganization of human platelets induced by the protein phosphatase 1/2 A inhibitors okadaic acid and calyculin A. Biochem J 307 ( Pt 2), 439-49.
    Young, M. R., Liu, S. W. and Meisinger, J. (2003). Protein phosphatase-2A restricts migration of Lewis lung carcinoma cells by modulating the phosphorylation of focal adhesion proteins. Int J Cancer 103, 38-44.
    Zehr, C., Lewis, J., McGowan, E., Crook, J., Lin, W. L., Godwin, K., Knight, J., Dickson, D. W. and Hutton, M. (2004). Apoptosis in oligodendrocytes is associated with axonal degeneration in P301L tau mice. Neurobiol Dis 15, 553-62.
    Zeng, Y. A. and Verheyen, E. M. (2004). Nemo is an inducible antagonist of Wingless signaling during Drosophila wing development. Development 131, 2911-20.

    無法下載圖示 本全文未授權公開
    QR CODE