研究生: |
黃可翰 Huang, Ko-Han |
---|---|
論文名稱: |
2000-2020乾旱對副熱帶島嶼植被影響之探討 Vegetation response to drought in a subtropical island between 2000-2020 |
指導教授: |
林登秋
Lin, Teng-Chiu |
口試委員: |
張仲德
Chang, Chung-Te 王素芬 Wang, Su-Fen 林登秋 Lin, Teng-Chiu |
口試日期: | 2023/06/14 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 乾旱 、常態化差異紅外指數 、增強植被指數 、標準降水指數 |
英文關鍵詞: | drought, NDII, EVI, SPI |
研究方法: | 次級資料分析 |
DOI URL: | http://doi.org/10.6345/NTNU202301118 |
論文種類: | 學術論文 |
相關次數: | 點閱:87 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
陸域生態系為地球上重要的碳庫,而嚴重的乾旱會影響碳循環,受到氣候變遷的影響,乾旱發生的頻率以及嚴重程度正逐漸上升。臺灣因全球暖化加上降雨型態的改變,夏季的降水有減少的趨勢,未來中南部地區發生乾旱的機率上升。了解植被對於乾旱的反應,有助於評估在全球氣候變遷的情境下生態系功能的變化。透過遙測技術可以長時間且大規模的分析植被受環境變化的影響,本研究透過美國太空總署的遙測感應器MODIS (Moderate-resolution Imaging Spectroradiometer)衍生的增強植被指數(EVI; 250 m x 250 m)和常態化差異紅外指數(NDII; 500 m x 500 m),以及3個月雨水累積的標準降水指數(SPI3),評估臺20年來(2000-2020)乾旱對臺灣植被影響。結果發現,20年間臺灣共發生兩次極度乾旱,皆對植被生長有明顯負面影響,2002年極度乾旱造成植生指數減少約20%,特別是中、南部山區的植被受到的影響最大,經過4個月的時間才恢復至歷年平均值;2020年乾旱使植生指數下降約10%,並觀察到植物生長對乾旱的延遲反應。本研究也發現不同類群的植被對於乾旱的反應有所不同,乾旱期間草原的植生指數下降幅度最小,而闊葉林及混合林下降幅度較大;農田地雖受負面影響,但恢復速率較快。相關性分析結果顯示,植被的生長情形在不同程度的缺水壓力下不盡相同,且有明顯的空間分布差異及延遲反應。NDII指數與乾旱指數的相關性較高,顯著網格佔總植被網格數約54%,並隨時間延遲,相關性逐漸減弱;EVI指數則是在一個月的延遲下與乾旱指數有較高的相關性。本次研究的結果有助於了解生態系對於乾旱的反應,未來需要結合多方面且長期的研究,才能更深入了解以應對氣候變遷對生態環境的衝擊。
Terrestrial ecosystems are important carbon sinks on Earth but severe drought could affect carbon cycling. The frequency and severity of droughts are gradually increasing due to climate change. Taiwan is experiencing a trend of decreasing summer precipitation due to changes in rainfall patterns likely because of global warming, which increases the likelihood of droughts in central and southern Taiwan. Understanding the response of vegetation to droughts can help assess changes in ecosystem function under global climate change scenarios. Remote sensing technology can be used to analyze the impact of environmental changes on vegetation over a long period of time and over very broad spatial extent. In this study, the enhanced vegetation Index (EVI; 250 m x 250 m), normalized difference infrared index (NDII; 500 m x 500 m) derived from MODIS (Moderate-resolution Imaging Spectroradiometer) of NASA, and the standard precipitation Index for three-month accumulated rainfall (SPI3) were used to evaluate the impact of drought on Taiwan's vegetation over the past 20 years (2000-2020). The results showed that Taiwan experienced two extreme droughts during the 20-year period, both of which had a significant negative impact on vegetation growth. The extreme drought in 2002 caused a decrease in vegetation index of about 20%, especially in the central and southern mountainous areas, which took about four months to recover to the average value of the previous years. The drought in 2020 caused a decrease in vegetation index of about 10%, and the lag response of plant growth to drought was observed. This study also found that different types of vegetation have different responses to drought. The grassland had the smallest decrease in vegetation index during the drought period, while the broad-leaved forest and mixed forest had larger decreases. Although the cropland was negatively affected, its recovery rate was faster. The correlation analysis showed that the response of vegetation growth to different degrees of water stress was different and showed significant spatial variation and lag response. Compared to EVI. NDII index had a higher correlation with the drought index, with about 54% of all vegetation pixels experiencing significant decreases, and the correlation gradually weakened over time. The EVI index had a higher correlation with the drought index with a lag of one month. The results of this study help to understand the response of ecosystems to droughts. In the future, multi-faceted and long-term research is needed to gain a deeper understanding of the impact of climate change on the ecological environment.
王素芬、林婉婷、張仲德、林登秋 (2012)。蓮華池試驗林梅雨降雨型態變遷與植生變動之分析。地理學報 66: 67-86。
朱容練、朱吟晨、林士堯、劉俊志、陳永明(2015)。國家災害防救科技中心災害防救電子報,124: 2-13。
洪致文、施明甫(2017)。台灣氣象乾旱指數的建立與嚴重乾旱事件分析。大氣科學 45(2): 145-165.
劉玫婷、李欣輯、徐永衡、陳永明(2021)。國家災害防救科技中心災害防救電子報,194: 3-13。
Abdulmana, S., Lim, A., Wongsai, S., & Wongsai, N. (2021). Land surface temperature and vegetation cover changes and their relationships in Taiwan from 2000 to 2020. Remote Sensing Applications: Society and Environment, 24, 100636.
Adams, H. D., Zeppel, M. J., Anderegg, W. R., Hartmann, H., Landhäusser, S. M., Tissue, D. T., Huxman, T. E., Hudson, P. J., Franz, T. E., & Allen, C. D. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 1(9), 1285-1291.
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H. (Ted), Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S. W., Semerci, A., & Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change
Anderegg, W. R., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J., Bentz, B., Hood, S., Lichstein, J. W., Macalady, A. K., & McDowell, N. (2015). Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist, 208(3), 674-683.
Anderegg, W. R., Plavcová, L., Anderegg, L. D., Hacke, U. G., Berry, J. A., & Field, C. B. (2013). Drought's legacy: multiyear hydraulic deterioration underlies widespread aspen forest die‐off and portends increased future risk. Global Change Biology, 19(4), 1188-1196.
Anderson, L. O., Malhi, Y., Aragão, L. E., Ladle, R., Arai, E., Barbier, N., & Phillips, O. (2010). Remote sensing detection of droughts in Amazonian forest canopies. New Phytologist, 187(3), 733-750.
Asner, G. P., & Alencar, A. (2010). Drought impacts on the Amazon forest: The remote sensing perspective. New Phytologist, 187(3), 569-578.
Au, T. F., Maxwell, J. T., Robeson, S. M., Li, J., Siani, S. M., Novick, K. A., Dannenberg, M. P., Phillips, R. P., Li, T., & Chen, Z. (2022). Younger trees in the upper canopy are more sensitive but also more resilient to drought. Nature Climate Change, 12, 1168-1174.
Babst, F., Bouriaud, O., Poulter, B., Trouet, V., Girardin, M. P., & Frank, D. C. (2019). Twentieth century redistribution in climatic drivers of global tree growth. Science Advances, 5(1), eaat4313.
Banerjee, O., Bark, R., Connor, J., & Crossman, N. D. (2013). An ecosystem services approach to estimating economic losses associated with drought. Ecological Economics, 91, 19-27.
Barbeta, A., Mejía‐Chang, M., Ogaya, R., Voltas, J., Dawson, T. E., & Peñuelas, J. (2015). The combined effects of a long‐term experimental drought and an extreme drought on the use of plant‐water sources in a Mediterranean forest. Global Change Biology, 21(3), 1213-1225.
Barbosa, J. M., & Asner, G. P. (2017). Effects of long-term rainfall decline on the structure and functioning of Hawaiian forests. Environmental Research Letters, 12(9), 094002.
Barlow, M., Zaitchik, B., Paz, S., Black, E., Evans, J., & Hoell, A. (2016). A review of drought in the Middle East and southwest Asia. Journal of Climate, 29(23), 8547-8574.
Barnard, R. L., Osborne, C. A., & Firestone, M. K. (2013). Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. The ISME Journal, 7(11), 2229-2241.
Baudoin, M. A., Vogel, C., Nortje, K., & Naik, M. (2017). Living with drought in South Africa: Lessons learnt from the recent El Niño drought period. International Journal of Disaster Risk Reduction, 23, 128–137.
Beguería, S., Vicente‐Serrano, S. M., Reig, F., & Latorre, B. (2014). Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34(10), 3001-3023.
Bell, J. E., Brown, C. L., Conlon, K., Herring, S., Kunkel, K. E., Lawrimore, J., Luber, G., Schreck, C., Smith, A., & Uejio, C. (2018). Changes in extreme events and the potential impacts on human health. Journal of the Air & Waste Management Association, 68(4), 265-287.
Bennett, A. C., McDowell, N. G., Allen, C. D., & Anderson-Teixeira, K. J. (2015). Larger trees suffer most during drought in forests worldwide. Nature Plants, 1(10), 1-5.
Bunting, E. L., Munson, S. M., & Villarreal, M. L. (2017). Climate legacy and lag effects on dryland plant communities in the southwestern US. Ecological Indicators, 74, 216-229.
Bonan, G. B. (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444-1449.
Brando, P. M., Goetz, S. J., Baccini, A., Nepstad, D. C., Beck, P. S., & Christman, M. C. (2010). Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proceedings of the National Academy of Sciences, 107(33), 14685-14690.
Buras, A., Schunk, C., Zeiträg, C., Herrmann, C., Kaiser, L., Lemme, H., Straub, C., Taeger, S., Gößwein, S., & Klemmt, H. J. (2018). Are Scots pine forest edges particularly prone to drought-induced mortality? Environmental Research Letters, 13(2), 025001.
Cavin, L., Mountford, E. P., Peterken, G. F., & Jump, A. S. (2013). Extreme drought alters competitive dominance within and between tree species in a mixed forest stand. Functional Ecology, 27(6), 1424-1435.
Camarero, J. J., Shestakova, T. A., & Pizarro, M. (2022). Threshold responses of canopy cover and tree growth to drought and Siberian silk Moth outbreak in southern Taiga Picea obovata Forests. Forests, 13(5), 768.
Campos, H., Trejo, C., Peña-Valdivia, C. B., García-Nava, R., Conde-Martínez, F. V., & Cruz-Ortega, M. R. (2014). Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering: Delayed restoration of photosynthesis during recovery. Environmental and Experimental Botany, 98, 56-64.
Canarini, A., Schmidt, H., Fuchslueger, L., Martin, V., Herbold, C. W., Zezula, D., Gündler, P., Hasibeder, R., Jecmenica, M., & Bahn, M. (2021). Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nature Communications, 12(1), 5308.
Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S., & Grégoire, J. M. (2001). Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sensing of Environment, 77(1), 22-33.
Clark, J. S., Iverson, L., Woodall, C. W., Allen, C. D., Bell, D. M., Bragg, D. C., D'Amato, A. W., Davis, F. W., Hersh, M. H., & Ibanez, I. (2016). The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Global Change Biology, 22(7), 2329-2352.
Crausbay, S. D., Ramirez, A. R., Carter, S. L., Cross, M. S., Hall, K. R., Bathke, D. J., Betancourt, J. L., Colt, S., Cravens, A. E., & Dalton, M. S. (2017). Defining ecological drought for the twenty-first century. Bulletin of the American Meteorological Society, 98(12), 2543-2550.
Chang, C. C., Chen, C. C., & McCarl, B. (2012). Evaluating the economic impacts of crop yield change and sea level rise induced by climate change on Taiwan's agricultural sector. Agricultural Economics, 43(2), 205-214.
Chang, C. T., Lin, T. C., Wang, S. F., & Vadeboncoeur, M. A. (2011). Assessing growing season beginning and end dates and their relation to climate in Taiwan using satellite data. International Journal of Remote Sensing, 32(18), 5035–5058.
Chang, C. T., Wang, H. C., & Huang, C. (2013). Impacts of vegetation onset time on the net primary productivity in a mountainous island in Pacific Asia. Environmental Research Letters, 8(4), 045030.
Chang, C., Wang, H., & Huang, C. (2014). Retrieving multi-scale climatic variations from high dimensional time-series MODIS green vegetation cover in a tropical/subtropical mountainous island. Journal of Mountain Science, 11, 407–420.
Chang, C. T., Wang, H. C., & Huang, C. (2018). Assessment of MODIS-derived indices (2001–2013) to drought across Taiwan’s forests. International Journal of Biometeorology, 62, 809–822.
Chang, C. T., Wang, S. F., Vadeboncoeur, M. A., & Lin, T. C. (2014). Relating vegetation dynamics to temperature and precipitation at monthly and annual timescales in Taiwan using MODIS vegetation indices. International Journal of Remote Sensing, 35(2), 598–620.
Choat, B., Brodribb, T. J., Brodersen, C. R., Duursma, R. A., López, R., & Medlyn, B. E. (2018). Triggers of tree mortality under drought. Nature, 558(7711), 531-539.
Chou, C. H., & Tang, H. Y. (2016). Conservation of biodiversity in Taiwan. Journal of Plant Science, 10, 1-5.
Chen, S. T., Kuo, C. C., & Yu, P. S. (2009). Historical trends and variability of meteorological droughts in Taiwan. Hydrological Sciences Journal, 54(3), 430–441.
Chen, X., Mo, X., Hu, S., & Liu, S. (2017). Contributions of climate change and human activities to ET and GPP trends over North China Plain from 2000 to 2014. Journal of Geographical Sciences, 27, 661-680.
Cunha, A. P. M., Alvalá, R. C., Nobre, C. A., & Carvalho, M. A. (2015). Monitoring vegetative drought dynamics in the Brazilian semiarid region. Agricultural and Forest Meteorology, 214-215, 494-505.
Dai, A. (2011). Characteristics and trends in various forms of the palmer drought severity Index during 1900–2008. Journal of Geophysical Research: Atmospheres, 116(D12).
D'Amato, A. W., Bradford, J. B., Fraver, S., & Palik, B. J. (2013). Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecological Applications, 23(8), 1735-1742.
Demetillo, M. A. G., Anderson, J. F., Geddes, J. A., Yang, X., Najacht, E. Y., Herrera, S. A., Kabasares, K. M., Kotsakis, A. E., Lerdau, M. T., & Pusede, S. E. (2019). Observing severe drought influences on ozone air pollution in California. Environmental Science and Technology, 53(9), 4695-4706.
Deng, H., Yin, Y., & Han, X. (2020). Vulnerability of vegetation activities to drought in Central Asia. Environmental Research Letters, 15(8), 084005.
Deng, Y., Wang, X., Wang, K., Ciais, P., Tang, S., Jin, L., Li, L., & Piao, S. (2021). Responses of vegetation greenness and carbon cycle to extreme droughts in China. Agricultural and Forest Meteorology, 298–299, 108307.
Dietze, M. C., & Moorcroft, P. R. (2011). Tree mortality in the eastern and central United States: patterns and drivers. Global Change Biology, 17(11), 3312-3326.
Ding, Y., Li, Z., & Peng, S. (2020). Global analysis of time-lag and-accumulation effects of climate on vegetation growth. International Journal of Applied Earth Observation and Geoinformation, 92, 102179.
Dong, C., MacDonald, G. M., Willis, K., Gillespie, T. W., Okin, G. S., & Williams, A. P. (2019). Vegetation responses to 2012–2016 drought in Northern and Southern California. Geophysical Research Letters, 46(7), 3810-3821.
Doughty, C. E., Metcalfe, D., Girardin, C., Amézquita, F. F., Cabrera, D. G., Huasco, W. H., Silva-Espejo, J., Araujo-Murakami, A., Da Costa, M., & Rocha, W. (2015). Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature, 519(7541), 78-82.
Earles, J. M., North, M. P., & Hurteau, M. D. (2014). Wildfire and drought dynamics destabilize carbon stores of fire‐suppressed forests. Ecological Applications, 24(4), 732-740.
Eltahir, E. A., & Yeh, P. J. F. (1999). On the asymmetric response of aquifer water level to floods and droughts in Illinois. Water Resources Research, 35(4), 1199-1217.
Ermitão, T., Gouveia, C. M., Bastos, A., & Russo, A. C. (2021). Vegetation productivity losses linked to mediterranean hot and dry events. Remote Sensing, 13(19), 4010.
Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T., Kachergis, E. J., Steltzer, H., & Wallenstein, M. D. (2014). Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biology, 20(10), 3256-3269.
Felton, A. J., Knapp, A. K., & Smith, M. D. (2021). Precipitation–productivity relationships and the duration of precipitation anomalies: an underappreciated dimension of climate change. Global Change Biology, 27(6), 1127-1140.
Fettig, C. J., Mortenson, L. A., Bulaon, B. M., & Foulk, P. B. (2019). Tree mortality following drought in the central and southern Sierra Nevada, California, US. Forest Ecology and Management, 432, 164-178.
Feyen, L., & Dankers, R. (2009). Impact of global warming on streamflow drought in Europe. Journal of Geophysical Research: Atmospheres, 114(D17).
Branco, E. R. F., Dos Santos, A. R., Pezzopane, J. E. M., Dos Santos, A. B., Alexandre, R. S., Bernardes, V. P., da Silva, R. G., de Souza, K. B., & Moura, M. M. (2019). Space-time analysis of vegetation trends and drought occurrence in domain area of tropical forest. Journal of Environmental Management, 246, 384-396.
Galván, J. D., Büntgen, U., Ginzler, C., Grudd, H., Gutiérrez, E., Labuhn, I., & Camarero, J. J. (2015). Drought-induced weakening of growth–temperature associations in high-elevation Iberian pines. Global and Planetary Change, 124, 95-106.
Ganjurjav, H., Gornish, E. S., Hu, G., Schwartz, M. W., Wan, Y., Li, Y., & Gao, Q. (2020). Warming and precipitation addition interact to affect plant spring phenology in alpine meadows on the central Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 287, 107943.
Gao, X., Zhao, Q., Zhao, X., Wu, P., Pan, W., Gao, X., & Sun, M. (2017). Temporal and spatial evolution of the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050. Science of the Total Environment, 595, 191-200.
Gazol, A., Camarero, J. J., Anderegg, W. R. L., & Vicente‐Serrano, S. M. (2017). Impacts of droughts on the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography, 26(2), 166-176.
Geng, S., Shi, P., Song, M., Zong, N., Zu, J., & Zhu, W. (2019). Diversity of vegetation composition enhances ecosystem stability along elevational gradients in the Taihang Mountains, China. Ecological Indicators, 104, 594-603.
Gharun, M., Hörtnagl, L., Paul-Limoges, E., Ghiasi, S., Feigenwinter, I., Burri, S., Marquardt, K., Etzold, S., Zweifel, R., & Eugster, W. (2020). Physiological response of Swiss ecosystems to 2018 drought across plant types and elevation. Philosophical Transactions of the Royal Society B, 375(1810), 20190521.
Gouveia, C. M., Trigo, R. M., Beguería, S., & Vicente-Serrano, S. M. (2017). Drought impacts on vegetation activity in the Mediterranean region: An assessment using remote sensing data and multi-scale drought indicators. Global and Planetary Change, 151, 15-27.
Graciano, C., Guiamét, J. J., & Goya, J. F. (2005). Impact of nitrogen and phosphorus fertilization on drought responses in Eucalyptus grandis seedlings. Forest Ecology and Management, 212(1-3), 40-49.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226(6), 1550-1566.
Guenang, G. M., & Kamga, F. M. (2014). Computation of the standardized precipitation index (SPI) and its use to assess drought occurrences in Cameroon over recent decades. Journal of Applied Meteorology and Climatology, 53(10), 2310-2324.
He, W., Ju, W., Schwalm, C. R., Sippel, S., Wu, X., He, Q., Song, L., Zhang, C., Li, J., Sitch, S., Viovy, N., Friedlingstein, P., & Jain, A. K. (2018). Large-scale droughts responsible for dramatic reductions of terrestrial net carbon uptake over north America in 2011 and 2012. Journal of Geophysical Research: Biogeosciences, 123(7), 2053–2071.
He, Y., Chen, F., Jia, H., Wang, L., & Bondur, V. G. (2020). Different drought legacies of rain-fed and irrigated croplands in a typical Russian agricultural region. Remote Sensing, 12(11), 1700.
Heim Jr, R. R. (2002). A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society, 83(8), 1149-1166.
Hernandez, E. A., & Uddameri, V. (2014). Standardized precipitation evaporation index (SPEI)-based drought assessment in semi-arid south Texas. Environmental Earth Sciences, 71, 2491-2501.
Hoffman, M. T., Carrick, P. J., Gillson, L., & West, A. G. (2009). Drought, climate change and vegetation response in the succulent karoo, South Africa: Research article. South African Journal of Science, 105(1), 54–60.
Hoover, D. L., & Rogers, B. M. (2016). Not all droughts are created equal: the impacts of interannual drought pattern and magnitude on grassland carbon cycling. Global Change Biology, 22(5), 1809-1820.
Houborg, R., & McCabe, M. F. (2018). A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning. ISPRS Journal of Photogrammetry and Remote Sensing, 135, 173–188.
Hsu, H. H., & Chen, C.-T. (2002). Observed and projected climate change in Taiwan. Meteorology and Atmospheric Physics, 79, 87–104.
Hung, C. W., & Shih, M. F. (2017). Construction of the Taiwan meteorological drought index and the analysis of severe drought cases. Atmosphere. Sci, 45, 145-165.
Huang, K., & Xia, J. (2019). High ecosystem stability of evergreen broadleaf forests under severe droughts. Global Change Biology, 25(10), 3494-3503.
Huang, M., Wang, X., Keenan, T. F., & Piao, S. (2018). Drought timing influences the legacy of tree growth recovery. Global Change Biology, 24(8), 3546-3559.
Huang, W. C., & Yuan, L. C. (2004). A drought early warning system on real‐time multireservoir operations. Water Resources Research, 40(6), W06401.
Huang, Z., Ma, C., Chyi, S. J., Tang, L., & Zhao, L. (2020). Paleofire, vegetation, and climate reconstructions of the middle to late Holocene from lacustrine sediments of the Toushe Basin, Taiwan. Geophysical Research Letters, 47(20), e2020GL090401.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195-213.
Huete, A. R., Liu, H. Q., Batchily, K. V., & Van Leeuwen, W. J. D. A. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59(3), 440-451.
Ichii, K., Kawabata, A., & Yamaguchi, Y. (2002). Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982-1990. International Journal of Remote Sensing, 23(18), 3873-3878.
IPCC 2012 Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change ed C B Field et al. (Cambridge: Cambridge University Press)
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.]. Cambridge University Press
IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp.
Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., ... & Eisenhauer, N. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526(7574), 574-577.
Jacques, C., Salon, C., Barnard, R. L., Vernoud, V., & Prudent, M. (2021). Drought stress memory at the plant cycle level: A review. Plants, 10(9), 1873.
Jain, S. K., Keshri, R., Goswami, A., & Sarkar, A. (2010). Application of meteorological and vegetation indices for evaluation of drought impact: A case study for Rajasthan, India. Natural Hazards, 54, 643–656.
Jha, S., Das, J., Sharma, A., Hazra, B., & Goyal, M. K. (2019). Probabilistic evaluation of vegetation drought likelihood and its implications to resilience across India. Global and Planetary Change, 176, 23-35.
Jiang, W., Wang, L., Feng, L., Zhang, M., & Yao, R. (2020). Drought characteristics and its impact on changes in surface vegetation from 1981 to 2015 in the Yangtze River Basin, China. International Journal of Climatology, 40(7), 3380-3397.
Ji, L., & Peters, A. J. (2003). Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing of Environment, 87(1), 85-98.
Joiner, J., Yoshida, Y., Anderson, M., Holmes, T., Hain, C., Reichle, R., ... & Zeng, F. W. (2018). Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales. Remote Sensing of Environment, 219, 339-352.
Kaisermann, A., de Vries, F. T., Griffiths, R. I., & Bardgett, R. D. (2017). Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. New Phytologist, 215(4), 1413-1424.
Kannenberg, S. A., Novick, K. A., & Phillips, R. P. (2019). Anisohydric behavior linked to persistent hydraulic damage and delayed drought recovery across seven North American tree species. New Phytologist, 222(4), 1862-1872.
Kannenberg, S. A., Schwalm, C. R., & Anderegg, W. R. (2020). Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecology Letters, 23(5), 891-901.
Khatri-Chhetri, P., Hendryx, S. M., Hartfield, K. A., Crimmins, M. A., Leeuwen, W. J. V., & Kane, V. R. (2021). Assessing vegetation response to multi-scalar drought across the mojave, sonoran, chihuahuan deserts and apache highlands in the Southwest United States. Remote Sensing, 13(6), 1103.
Kong, Q., Guerreiro, S. B., Blenkinsop, S., Li, X. F., & Fowler, H. J. (2020). Increases in summertime concurrent drought and heatwave in Eastern China. Weather and Climate Extremes, 28, 100242.
Kuo, C. C., Liu, Y. C., Su, Y., Liu, H. Y., & Lin, C. T. (2022). Responses of alpine summit vegetation under climate change in the transition zone between subtropical and tropical humid environment. Scientific Reports, 12(1), 13352.
Lawson, T. (2009). Guard cell photosynthesis and stomatal function. New Phytologist, 181(1), 13-34.
Lee, Y. C., Wang, C. C., Weng, S. P., Chen, C. T., & Cheng, C. T. (2019). Future projections of meteorological drought characteristics in Taiwan. Atmosphere Sciences, 47, 66-91.
Lei, T., Feng, J., Lv, J., Wang, J., Song, H., Song, W., & Gao, X. (2020). Net Primary Productivity Loss under different drought levels in different grassland ecosystems. Journal of Environmental Management, 274, 111144.
Lewis, S. L., Brando, P. M., Phillips, O. L., Van Der Heijden, G. M., & Nepstad, D. (2011). The 2010 amazon drought. Science, 331(6017), 554-554.
Li, C., Leal Filho, W., Yin, J., Hu, R., Wang, J., Yang, C., Yin, S., Bao, Y., & Ayal, D. Y. (2018). Assessing vegetation response to multi-time-scale drought across inner Mongolia plateau. Journal of Cleaner Production, 179(1), 210–216.
Liu, D., Zhang, C., Ogaya, R., Estiarte, M., & Peñuelas, J. (2020). Effects of decadal experimental drought and climate extremes on vegetation growth in Mediterranean forests and shrublands. Journal of Vegetation Science, 31(5), 768-779.
Liu, L. Y., Huang, W. J., PU, R. L., & Wang, J. H. (2014). Detection of internal leaf structure deterioration using a new spectral ratio index in the near-infrared shoulder region. Journal of Integrative Agriculture, 13(4), 760-769.
Liu, F., Liu, H., Xu, C., Shi, L., Zhu, X., Qi, Y., & He, W. (2021). Old-growth forests show low canopy resilience to droughts at the southern edge of the taiga. Global Change Biology, 27(11), 2392–2402.
Liu, W. T. H., Massambani, O., & Nobre, C. A. (1994). Satellite recorded vegetation response to drought in Brazil. International Journal of Climatology, 14(3), 343–354.
Liu, Y., & Lei, H. (2015). Responses of natural vegetation dynamics to climate drivers in China from 1982 to 2011. Remote Sensing, 7(8), 10243-10268.
Liu, Y. Y., van Dijk, A. I., Miralles, D. G., McCabe, M. F., Evans, J. P., de Jeu, R. A. M., Gentine, P., Huete, A., Parinussa, R. M., Wang, L., Guan, K., Berry, J., & Restrepo-Coupe, N. (2018). Enhanced canopy growth precedes senescence in 2005 and 2010 Amazonian droughts. Remote Sensing of Environment, 211, 26-37.
Loisel, J., Gallego-Sala, A. V., Amesbury, M., Magnan, G., Anshari, G., Beilman, D., Benavides, J., Blewett, J., Camill, P., & Charman, D. (2021). Expert assessment of future vulnerability of the global peatland carbon sink. Nature Climate Change, 11(1), 70-77.
Luo, H., Zhou, T., Wu, H., Zhao, X., Wang, Q., Gao, S., & Li, Z. (2016). Contrasting responses of planted and natural forests to drought intensity in Yunnan, China. Remote Sensing, 8(8), 635.
Luo, H., Zhou, T., Yu, P., Yi, C., Liu, X., Zhang, Y., Zhou, P., Zhang, J., & Xu, Y. (2022). The forest recovery path after drought dependence on forest type and stock volume. Environmental Research Letters, 17(5), 055006.
Luomala, E. M., Laitinen, K., Sutinen, S., Kellomäki, S., & Vapaavuori, E. (2005). Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature. Plant, Cell & Environment, 28(6), 733-749.
Manzano, A., Clemente, M. A., Morata, A., Luna, M. Y., Beguería, S., Vicente-Serrano, S. M., & Martín, M. L. (2019). Analysis of the atmospheric circulation pattern effects over SPEI drought index in Spain. Atmospheric Research, 230, 104630.
Markonis, Y., Hanel, M., Máca, P., Kyselý, J., & Cook, E. R. (2018). Persistent multi-scale fluctuations shift European hydroclimate to its millennial boundaries. Nature Communications, 9(1), 1767.
Matsushita, B., Yang, W., Chen, J., Onda, Y., & Qiu, G. (2007). Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors, 7(11), 2636-2651.
Mayr, S., Wolfschwenger, M., & Bauer, H. (2002). Winter‐drought induced embolism in Norway spruce (Picea abies) at the Alpine timberline. Physiologia Plantarum, 115(1), 74-80.
McDowell, N., Allen, C. D., Anderson‐Teixeira, K., Brando, P., Brienen, R., Chambers, J., Christoffersen, B., Davies, S., Doughty, C., & Duque, A. (2018). Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 219(3), 851-869.
McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, 17(22), 179-183.
Meehl, G. A., & Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305(5686), 994–997.
Misson, L., Degueldre, D., Collin, C., Rodriguez, R., Rocheteau, A., OURCIVAL, J. M., & Rambal, S. (2011). Phenological responses to extreme droughts in a Mediterranean forest. Global Change Biology, 17(2), 1036-1048.
Mitchell, P. J., Benyon, R. G., & Lane, P. N. (2012). Responses of evapotranspiration at different topographic positions and catchment water balance following a pronounced drought in a mixed species eucalypt forest, Australia. Journal of Hydrology, 440-441, 62-74.
Moran, E., Lauder, J., Musser, C., Stathos, A., & Shu, M. (2017). The genetics of drought tolerance in conifers. New Phytologist, 216(4), 1034-1048.
Móricz, N., Garamszegi, B., Rasztovits, E., Bidló, A., Horváth, A., Jagicza, A., Illés, G., Vekerdy, Z., Somogyi, Z., & Gálos, B. (2018). Recent drought-induced vitality decline of black pine (Pinus nigra Arn.) in south-west hungary—Is this drought-resistant species under threat by climate change? Forests, 9(7), 414.
Mukherjee, S., & Mishra, A. K. (2021). Increase in compound drought and heatwaves in a warming world. Geophysical Research Letters, 48(1), e2020GL090617.
Nagendra, H., Lucas, R., Honrado, J. P., Jongman, R. H., Tarantino, C., Adamo, M., & Mairota, P. (2013). Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecological Indicators, 33, 45-59.
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., & Running, S. W. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625), 1560-1563.
Nepstad, D., Lefebvre, P., Lopes da Silva, U., Tomasella, J., Schlesinger, P., Solórzano, L., Moutinho, P., Ray, D., & Guerreira Benito, J. (2004). Amazon drought and its implications for forest flammability and tree growth: A basin-wide analysis. Global Change Biology, 10(5), 704–717.
O’Connell, C. S., Ruan, L., & Silver, W. L. (2018). Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions. Nature Communications, 9(1), 1-9.
Okin, G. S., Dong, C., Willis, K. S., Gillespie, T. W., & MacDonald, G. M. (2018). The impact of drought on native southern California vegetation: Remote sensing analysis using MODIS‐derived time series. Journal of Geophysical Research: Biogeosciences, 123(6), 1927-1939.
Page, S. E., Siegert, F., Rieley, J. O., Boehm, H. D. V., Jaya, A., & Limin, S. (2002). The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420(6911), 61-65.
Paiva Alcoforado Rebello, V., Getirana, A., Rotunno Filho, O. C., & Lakshmi, V. (2020). Spatiotemporal vegetation response to extreme droughts in eastern Brazil. Remote Sensing Applications: Society and Environment, 18, 100294.
Palmer, W. C. (1965). Meteorological drought (Vol. 30). US Department of Commerce, Weather Bureau. Washington DC, USA.
Rao, K., Anderegg, W. R., Sala, A., Martínez-Vilalta, J., & Konings, A. G. (2019). Satellite-based vegetation optical depth as an indicator of drought-driven tree mortality. Remote Sensing of Environment, 227, 125-136.
Parry, et al. Climate Change 2007: Impacts, Adaptation, and Vulnerability. Contribution of Working Group 2 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ Press, Cambridge, UK, and New York, 2007).
Pascual, V. J., & Wang, Y. M. (2017). Utilizing rainfall and alternate wetting and drying irrigation for high water productivity in irrigated lowland paddy rice in southern Taiwan. Plant Production Science, 20(1), 24-35.
Pasho, E., Camarero, J. J., de Luis, M., & Vicente-Serrano, S. M. (2011). Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agricultural and Forest Meteorology, 151(12), 1800-1811.
Peng, J., Wu, C., Zhang, X., Wang, X., & Gonsamo, A. (2019). Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere. Global Change Biology, 25(6), 2174-2188.
Phillips, O. L., Aragão, L. E., Lewis, S. L., Fisher, J. B., Lloyd, J., López-González, G., Malhi, Y., Monteagudo, A., Peacock, J., & Quesada, C. A. (2009). Drought sensitivity of the Amazon rainforest. Science, 323(5919), 1344-1347.
Piao, S., Mohammat, A., Fang, J., Cai, Q., & Feng, J. (2006). NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Global Environmental Change, 16(4), 340-348.
Pirasteh‐Anosheh, H., Saed‐Moucheshi, A., Pakniyat, H., & Pessarakli, M. (2016). Stomatal responses to drought stress. Water Stress and Crop Plants: A Sustainable Approach, 1, 24-40.
Piao, S., Fang, J., Zhou, L., Guo, Q., Henderson, M., Ji, W., Li, Y., & Tao, S. (2003). Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. Journal of Geophysical Research: Atmospheres, 108(D14).
Pompa-García, M., González-Cásares, M., Gazol, A., & Camarero, J. J. (2021). Run to the hills: Forest growth responsiveness to drought increased at higher elevation during the late 20th century. Science of The Total Environment, 772, 145286.
Pretzsch, H., Schütze, G., & Uhl, E. (2013). Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter‐specific facilitation. Plant Biology, 15(3), 483-495.
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N., & Frank, D. C. (2013). Climate extremes and the carbon cycle. Nature, 500(7462), 287-295.
Reichstein, M., Ciais, P., Papale, D., Valentini, R., RUNNING, S., Viovy, N., Cramer, W., Granier, A., Ogée, J., & Allard, V. (2007). Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biology, 13(3), 634-651.
Richter, R., Ballasus, H., Engelmann, R. A., Zielhofer, C., Sanaei, A., & Wirth, C. (2022). Tree species matter for forest microclimate regulation during the drought year 2018: disentangling environmental drivers and biotic drivers. Scientific Reports, 12(1), 17559.
Rita, A., Camarero, J. J., Nolè, A., Borghetti, M., Brunetti, M., Pergola, N., Serio, C., Vicente‐Serrano, S. M., Tramutoli, V., & Ripullone, F. (2020). The impact of drought spells on forests depends on site conditions: The case of 2017 summer heat wave in southern Europe. Global Change Biology, 26(2), 851-863.
Rivero, R. M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S., & Blumwald, E. (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceedings of the National Academy of Sciences, 104(49), 19631–19636.
Sala, O. E., Gherardi, L. A., Reichmann, L., Jobbagy, E., & Peters, D. (2012). Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1606), 3135-3144.
Sánchez-Salguero, R., Camarero, J. J., Hevia, A., Madrigal-González, J., Linares, J. C., Ballesteros-Canovas, J. A., Sánchez-Miranda, A., Alfaro-Sánchez, R., Sangüesa-Barreda, G., & Galván, J. D. (2015). What drives growth of Scots pine in continental Mediterranean climates: drought, low temperatures or both? Agricultural and Forest Meteorology, 206(15), 151-162.
Sánchez-Salguero, R., Ortíz, C., Covelo, F., Ochoa, V., García-Ruíz, R., Seco, J. I., Carreira, J. A., Merino, J. Á., & Linares, J. C. (2015). Regulation of water use in the southernmost European fir (Abies pinsapo Boiss.): Drought avoidance matters. Forests, 6(6), 2241-2260.
Santos, V. A. H. F. dos, Ferreira, M. J., Rodrigues, J. V. F. C., Garcia, M. N., Ceron, J. V. B., Nelson, B. W., & Saleska, S. R. (2018). Causes of reduced leaf-level photosynthesis during strong El Niño drought in a Central Amazon forest. Global Change Biology, 24(9), 4266–4279.
Seddon, A. W., Macias-Fauria, M., Long, P. R., Benz, D., & Willis, K. J. (2016). Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531(7593), 229-232.
Semeraro, T., Luvisi, A., Lillo, A. O., Aretano, R., Buccolieri, R., & Marwan, N. (2020). Recurrence analysis of vegetation indices for highlighting the ecosystem response to drought events: An application to the Amazon forest. Remote Sensing, 12(6), 907.
Senf, C., Buras, A., Zang, C. S., Rammig, A., & Seidl, R. (2020). Excess forest mortality is consistently linked to drought across Europe. Nature Communications, 11(1), 6200.
Sheffield, J., Wood, E. F., Chaney, N., Guan, K., Sadri, S., Yuan, X., Olang, L., Amani, A., Ali, A., Demuth, S., & Ogallo, L. (2014). A drought monitoring and forecasting system for sub-Sahara African water resources and food security. Bulletin of the American Meteorological Society, 95(6), 861–882.
Shiau, J. T., & Hsiao, Y. Y. (2012). Water-deficit-based drought risk assessments in Taiwan. Natural Hazards, 64, 237-257.
Shrestha, R., Di, L., Eugene, G. Y., Kang, L., SHAO, Y. Z., & BAI, Y. Q. (2017). Regression model to estimate flood impact on corn yield using MODIS NDVI and USDA cropland data layer. Journal of Integrative Agriculture, 16(2), 398-407.
Sippel, S., Reichstein, M., Ma, X., Mahecha, M. D., Lange, H., Flach, M., & Frank, D. (2018). Drought, heat, and the carbon cycle: a review. Current Climate Change Reports, 4, 266-286.
Smith, J. G., Sconiers, W., Spasojevic, M. J., Ashton, I. W., & Suding, K. N. (2012). Phenological changes in alpine plants in response to increased snowpack, temperature, and nitrogen. Arctic, Antarctic, and Alpine Research, 44(1), 135-142.
Smith, M. N., Stark, S. C., Taylor, T. C., Ferreira, M. L., de Oliveira, E., Restrepo‐Coupe, N., Chen, S., Woodcock, T., Dos Santos, D. B., & Alves, L. F. (2019). Seasonal and drought‐related changes in leaf area profiles depend on height and light environment in an Amazon forest. New Phytologist, 222(3), 1284-1297.
Sobral, B. S., Oliveira-Júnior, J. F. de, de Gois, G., Pereira-Júnior, E. R., Terassi, P. M. de B., Muniz-Júnior, J. G. R., Lyra, G. B., & Zeri, M. (2019). Drought characterization for the state of Rio de Janeiro based on the annual SPI index: Trends, statistical tests and its relation with ENSO. Atmospheric Research, 220, 141–154.
Song, L., Li, Y., Ren, Y., Wu, X., Guo, B., Tang, X., Shi, W., Ma, M., Han, X., & Zhao, L. (2019). Divergent vegetation responses to extreme spring and summer droughts in Southwestern China. Agricultural and Forest Meteorology, 279, 107703.
Sönmez, F. K., Koemuescue, A. U., Erkan, A., & Turgu, E (2005). An analysis of spatial and temporal dimension of drought vulnerability in Turkey using the standardized precipitation index. Natural Hazards, 35, 243–264.
Sperry, J. S., & Love, D. M. (2015). What plant hydraulics can tell us about responses to climate‐change droughts. New Phytologist, 207(1), 14-27.
Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., & Vogt, J. (2014). World drought frequency, duration, and severity for 1951–2010. International Journal of Climatology, 34(8), 2792-2804.
Stimson, H. C., Breshears, D. D., Ustin, S. L., & Kefauver, S. C. (2005). Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma. Remote Sensing of Environment, 96(1), 108-118.
Stocker, T. (Ed.). (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge university press.
Stovall, A. E., Shugart, H., & Yang, X. (2019). Tree height explains mortality risk during an intense drought. Nature Communications, 10(1), 1-6.
Sturm, J., Santos, M. J., Schmid, B., & Damm, A. (2022). Satellite data reveal differential responses of Swiss forests to unprecedented 2018 drought. Global Change Biology, 28(9), 2956-2978.
Tannehill, I. R. (1947). Drought, its causes and effects (Vol. 64, No. 1, p. 83). LWW.
Thonfeld, F., Gessner, U., Holzwarth, S., Kriese, J., Da Ponte, E., Huth, J., & Kuenzer, C. (2022). A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years. Remote Sensing, 14(3), 562.
Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4(1), 17-22.
Trenberth, K. E., Moore, B., Karl, T. R., & Nobre, C. (2006). Monitoring and prediction of the earth’s climate: A future perspective. Journal of Climate, 19(20), 5001–5008.
Tsai, H. P., Wang, G. G., & Zhuang, Z. H. (2021). Vertical Differences in the Long-Term Trends and Breakpoints of NDVI and Climate Factors in Taiwan. Remote Sensing, 13(22), 4707.
Van der Schrier, G., Briffa, K. R., Osborn, T. J., & Cook, E. R. (2006). Summer moisture availability across North America. Journal of Geophysical Research: Atmospheres, 111(D11).
Van der Schrier, G., Jones, P. D., & Briffa, K. R. (2011). The sensitivity of the PDSI to the Thornthwaite and Penman‐Monteith parameterizations for potential evapotranspiration. Journal of Geophysical Research: Atmospheres, 116(D3).
Van Loon, A. F. (2015). Hydrological drought explained. Wiley Interdisciplinary Reviews: Water, 2(4), 359-392.
Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., Angulo, M., & El Kenawy, A. (2010). A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. Journal of Hydrometeorology, 11(4), 1033-1043.
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696-1718.
Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Beguería, S., Trigo, R., López-Moreno, J. I., Azorín-Molina, C., Pasho, E., Lorenzo-Lacruz, J., & Revuelto, J. (2013). Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences, 110(1), 52-57.
Vincini, M., Frazzi, E. R. M. E. S., & D’Alessio, P. A. O. L. O. (2008). A broad-band leaf chlorophyll vegetation index at the canopy scale. Precision Agriculture, 9, 303-319.
Volaire, F. (2018). A unified framework of plant adaptive strategies to drought: crossing scales and disciplines. Global Change Biology, 24(7), 2929-2938.
Wagle, P., Xiao, X., Torn, M. S., Cook, D. R., Matamala, R., Fischer, M. L., Jin, C., Dong, J., & Biradar, C. (2014). Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought. Remote Sensing of Environment, 152, 1-14.
Wang, H. C., & Chang, C. T. (2021). The dynamic of vegetation growth with regular climate and climatic fluctuations in a subtropical mountainous island, Taiwan. Remote Sensing, 13(16), 3298.
Wang, J., Rich, P. M., & Price, K. P. (2003). Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. International Journal of Remote Sensing, 24(11), 2345-2364.
Wang, L., Qu, J. J., Hao, X., & Zhu, Q. (2008). Sensitivity studies of the moisture effects on MODIS SWIR reflectance and vegetation water indices. International Journal of Remote Sensing, 29(24), 7065-7075.
Wang, Q., Wu, J., Lei, T., He, B., Wu, Z., Liu, M., Mo, X., Geng, G., Li, X., & Zhou, H. (2014). Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quaternary International, 349, 10-21.
Wang, W., Zhu, Y., Xu, R., & Liu, J. (2015). Drought severity change in China during 1961–2012 indicated by SPI and SPEI. Natural Hazards, 75, 2437–2451.
Wang, X., Pan, S., Pan, N., & Pan, P. (2022). Grassland productivity response to droughts in northern China monitored by satellite-based solar-induced chlorophyll fluorescence. Science of The Total Environment, 830, 154550.
Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote sensing of environment, 108(3), 290-310.
Hawthorne, S., & Miniat, C. F. (2018). Topography may mitigate drought effects on vegetation along a hillslope gradient. Ecohydrology, 11(1), e1825.
Wells, N., Goddard, S., & Hayes, M. J. (2004). A self-calibrating Palmer drought severity index. Journal of Climate, 17(12), 2335-2351.
WMO. 2006. Drought monitoring and early warning: Concepts, progress and future challenges. WMO-No. 1006, World Meteorological Organization, Geneva, Switzerland.
Wilhite, D. A., 2000: Drought as a natural hazard: Concepts and definitions. Droughts: A Global Assessment, D. A. Wilhite, Ed., Routledge, 3–18.
Wilhite, D. A., Hayes, M. J., & Svoboda, M. D. (2000). Drought monitoring and assessment: status and trends in the United States. Drought and Drought Mitigation in Europe, Kluwer Academic Publishers, Dordrecht, 149-160.
Wilhite, D. A. (2005). Drought and water crises: science, technology, and management issues. Crc Press.
Winkler, D. E., Belnap, J., Hoover, D., Reed, S. C., & Duniway, M. C. (2019). Shrub persistence and increased grass mortality in response to drought in dryland systems. Global Change Biology, 25(9), 3121-3135.
Wolf, S., Keenan, T. F., Fisher, J. B., Baldocchi, D. D., Desai, A. R., Richardson, A. D., Scott, R. L., Law, B. E., Litvak, M. E., Brunsell, N. A., Peters, W., & van der Laan-Luijkx, I. T. (2016). Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proceedings of the National Academy of Sciences, 113(21), 5880–5885.
Wu, S. H., Hseu, Z. Y., Shih, Y. T., Sun, I. F., Wang, H. H., & Sen, Y. C. (2011). Kenting karst Forest dynamics plot: tree species characteristics and distribution patterns. Taiwan Forestry Research Institute, Taipei, 1306.
Wu, X., Liu, H., Li, X., Ciais, P., Babst, F., Guo, W., Zhang, C., Magliulo, V., Pavelka, M., & Liu, S. (2018). Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Global Change Biology, 24(1), 504-516.
Wu, X., Zhang, R., Bento, V. A., Leng, S., Qi, J., Zeng, J., & Wang, Q. (2022). The effect of drought on vegetation gross primary productivity under different vegetation types across China from 2001 to 2020. Remote Sensing, 14(18), 4658.
Xiao, X., Zhang, Q., Hollinger, D., Aber, J., & Moore III, B. (2005). Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data. Ecological Applications, 15(3), 954-969.
Xie, M., Zhu, Y., Liu, S., Deng, D., Zhu, L., Zhao, M., & Wang, Z. (2022). Simulating the impacts of drought and warming in summer and autumn on the productivity of subtropical coniferous forests. Forests, 13(12), 2147.
Xu, C., McDowell, N. G., Fisher, R. A., Wei, L., Sevanto, S., Christoffersen, B. O., Weng, E., & Middleton, R. S. (2019). Increasing impacts of extreme droughts on vegetation productivity under climate change. Nature Climate Change, 9(12), 948-953.
Xu, P., Fang, W., Zhou, T., Zhao, X., Luo, H., Hendrey, G., & Yi, C. (2019). Spatial upscaling of tree-ring-based forest response to drought with satellite data. Remote Sensing, 11(20), 2344.
Xu, Y., Zhang, X., Wang, X., Hao, Z., Singh, V. P., & Hao, F. (2019). Propagation from meteorological drought to hydrological drought under the impact of human activities: A case study in northern China. Journal of Hydrology, 579, 124147.
Xulu, S., Peerbhay, K., Gebreslasie, M., & Ismail, R. (2018). Drought influence on forest plantations in Zululand, South Africa, using MODIS time series and climate data. Forests, 9(9), 528.
Yang, Q., Li, M., Zheng, Z., & Ma, Z. (2017). Regional applicability of seven meteorological drought indices in China. Science China Earth Sciences, 60, 745-760.
Yang, Y., Anderson, M. C., Gao, F., Wood, J. D., Gu, L., & Hain, C. (2021). Studying drought-induced forest mortality using high spatiotemporal resolution evapotranspiration data from thermal satellite imaging. Remote Sensing of Environment, 265, 112640.
Yeh, H. F. (2019). Using integrated meteorological and hydrological indices to assess drought characteristics in southern Taiwan. Hydrology Research, 50(3), 901-914.
Yeh, H.-F., & Hsu, H.-L. (2019). Stochastic model for drought forecasting in the southern Taiwan basin. Water, 11(10), 2041.
Ye, L., Shi, K., Xin, Z., Wang, C., & Zhang, C. (2019). Compound droughts and heat waves in China. Sustainability, 11(12), 3270.
Yen, T. M., & Wang, C. T. (2013). Assessing carbon storage and carbon sequestration for natural forests, man-made forests, and bamboo forests in Taiwan. International Journal of Sustainable Development & World Ecology, 20(5), 455-460.
Yu, P.-S., Yang, T.-C., & Kuo, C.-C. (2006). Evaluating long-Term trends in annual and seasonal precipitation in Taiwan. Water Resources Management, 20(6), 1007–1023.
Zalloni, E., Battipaglia, G., Cherubini, P., Saurer, M., & De Micco, V. (2019). Wood growth in pure and mixed Quercus ilex L. forests: drought influence depends on site conditions. Frontiers in Plant Science, 10, 397.
Zampieri, M., Russo, S., di Sabatino, S., Michetti, M., Scoccimarro, E., & Gualdi, S. (2016). Global assessment of heat wave magnitudes from 1901 to 2010 and implications for the river discharge of the Alps. Science of the Total Environment, 571, 1330-1339.
Zhan, C., Liang, C., Zhao, L., Jiang, S., Niu, K., & Zhang, Y. (2022). Drought-related cumulative and time-lag effects on vegetation dynamics across the Yellow River Basin, China. Ecological Indicators, 143, 109409.
Zhang, L., Qiao, N., Huang, C., & Wang, S. (2019). Monitoring drought effects on vegetation productivity using satellite solar-induced chlorophyll fluorescence. Remote Sensing, 11(4), 378.
Zhang, L., Xiao, J., Li, J., Wang, K., Lei, L., & Guo, H. (2012). The 2010 spring drought reduced primary productivity in southwestern China. Environmental Research Letters, 7(4), 045706.
Zhang, L., & Zhou, T. (2015). Drought over East Asia: A Review. Journal of Climate, 28(8), 3375–3399.
Zhang, Q., Kong, D., Singh, V. P., & Shi, P. (2017). Response of vegetation to different time-scales drought across China: Spatiotemporal patterns, causes and implications. Global and Planetary Change, 152, 1-11.
Zhang, Y., Peng, C., Li, W., Fang, X., Zhang, T., Zhu, Q., Chen, H., & Zhao, P. (2013). Monitoring and estimating drought-induced impacts on forest structure, growth, function, and ecosystem services using remote-sensing data: recent progress and future challenges. Environmental Reviews, 21(2), 103-115.
Zhang, Y., Xiao, X., Zhou, S., Ciais, P., McCarthy, H., & Luo, Y. (2016). Canopy and physiological controls of GPP during drought and heat wave. Geophysical Research Letters, 43(7), 3325-3333.
Zhang, X., Friedl, M. A., Schaaf, C. B., & Strahler, A. H. (2004). Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Global Change Biology, 10(7), 1133–1145.
Zhao, A., Yu, Q., Feng, L., Zhang, A., & Pei, T. (2020). Evaluating the cumulative and time-lag effects of drought on grassland vegetation: A case study in the Chinese Loess Plateau. Journal of Environmental Management, 261, 110214.
Zhao, A., Zhang, A., Cao, S., Liu, X., Liu, J., & Cheng, D. (2018). Responses of vegetation productivity to multi-scale drought in Loess Plateau, China. Catena, 163, 165-171.
Zhao, J., Feng, H., Xu, T., Xiao, J., Guerrieri, R., Liu, S., Wu, X., He, X., & He, X. (2021). Physiological and environmental control on ecosystem water use efficiency in response to drought across the northern hemisphere. Science of the Total Environment, 758, 143599.
Zhao, M., & Running, S. W. (2010). Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science, 329(5994), 940–943.
Zhong, S., Sun, Z., & Di, L. (2021). Characteristics of vegetation response to drought in the CONUS based on long-term remote sensing and meteorological data. Ecological Indicators, 127, 107767.
Zhong, S., Wang, C., Yang, Y., & Huang, Q. (2011). Risk assessment of drought in Yun-Gui-Guang of China jointly using the Standardized Precipitation Index and vulnerability curves. Geomatics, Natural Hazards and Risk, 9(1), 892–918.
Zhou, G., Peng, C., Li, Y., Liu, S., Zhang, Q., Tang, X., Liu, J., Yan, J., Zhang, D., & Chu, G. (2013). A climate change‐induced threat to the ecological resilience of a subtropical monsoon evergreen broad‐leaved forest in Southern China. Global Change Biology, 19(4), 1197-1210.
Zhou, L., Tian, Y., Myneni, R. B., Ciais, P., Saatchi, S., Liu, Y. Y., Piao, S., Chen, H., Vermote, E. F., & Song, C. (2014). Widespread decline of Congo rainforest greenness in the past decade. Nature, 509(7498), 86-90.
Zhu, X., Zhang, S., Liu, T., & Liu, Y. (2021). Impacts of heat and drought on gross primary productivity in China. Remote Sensing, 13(3), 378.
Zou, L., Cao, S., Zhao, A., & Sanchez-Azofeifa, A. (2020). Assessing the temporal response of tropical dry forests to meteorological drought. Remote Sensing, 12(14), 2341.