簡易檢索 / 詳目顯示

研究生: 李閣桓
Lee, Ko-Huan
論文名稱: 小雨蛙鳴叫聲地理變異之成因探討與理論檢測
Hypotheses testing of geographic variation in advertisement calls of Microhyla fissipes
指導教授: 林思民
Lin, Si-Min
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 48
中文關鍵詞: 生殖前隔離性擇狹口蛙科特徵分化繁殖群集
英文關鍵詞: lek, Microhylidae, prezygotic isolation, sexual selection, signal divergence
論文種類: 學術論文
相關次數: 點閱:112下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 動物行為會受到遺傳距離及環境的影響而產生差異,而亦有許多研究指出,物種間的交互作用使個體產生行為特徵上的改變。當親緣關係相近的兩種動物共域時,為了減少錯誤配對的機會,擇汰會加強牠們特徵或行為的差異,此現象稱為繁殖性狀替換(reproductive character displacement)。兩棲類的鳴叫行為直接影響到牠們的適存度,且研究指出兩棲類容易受到地理屏障的影響,因此鳴叫特徵適合用來研究動物行為在地理上的變異。當鳴叫特徵差異分別與遺傳距離及地理距離高度相關時,則鳴叫特徵的變異可能是受到基因漂變(genetic drift)的影響。然而當特徵差異只與地理距離相關時,則可能是受到文化漂變(cultural drift)的影響。除了漂變之外,自然選汰(ecological selection)也可能造成鳴叫特徵的變異,在這個理論的預測下,鳴叫特徵會與環境因子相關。本研究使用小雨蛙(Microhyla fissipes)與黑蒙西氏小雨蛙(M. heymonsi)做為研究材料,小雨蛙廣泛分布在台灣全島的低地平原,在西部的台中及花蓮以南與黑蒙西氏小雨蛙共域,這兩種小雨蛙使用相似的棲地,且發出人耳難以辨認的宣告叫聲。而在過去的調查中,我們也發現小雨蛙的鳴叫聲在各地間有些微的差異。因此本實驗欲檢測以下問題:(1)小雨蛙的鳴叫聲變異,是否是因為與黑蒙西氏小雨的蛙種間交互作用-繁殖性狀替換所造成?(2)基因漂變、文化漂變與自然選汰,何者較能解釋小雨蛙種內的鳴叫聲地理變異?我們蒐集了13個地點,共233隻動物,分析鳴叫聲特性,並與溫度及體型做回歸殘差來校正鳴叫特徵。利用粒線體的COI序列來進行族群結構的建立,計算遺傳分化程度及遺傳距離後,進行遺傳距離、地理距離及氣候差異鳴叫特徵差異的相關性。結果顯示,兩物種共域時並不會影響其鳴叫特徵,顯示這兩種小雨蛙間並不存在繁殖性狀替換。鳴叫特徵的差異與遺傳距離呈現顯著的正相關,與地理距離也顯著正相關,顯示鳴叫特徵的地理變異符合基因漂變的假說。另外,鳴叫特徵的差異與年均溫、年均濕度及年降雨量都沒有顯著相關,表示自然選汰並不是造成地理變異的原因。本研究的結果證實基因漂變是最有可能造成小雨蛙鳴叫聲地理變異的原因,而非文化漂變或選汰。

    Diversification of signals can provide insight into evolutionary processes of communication system. The forces undergo signal divergence included interaction between species, ecological force, genetic drift, or the recently proposed hypothesis of cultural drift. When closely related species are geographically overlapping, selection would favor differentiated in sexual traits through reproductive character displacement (RCD) in order to prevent from hybridization. Ecological factors such as temperature and humidity would also cause signal divergence in different selective regions. Furthermore, stochastic processes could not be excluded in the evolution of signal diversity. In this study, I tested alternative hypotheses including reproductive character displacement, ecological selection, genetic drift, and cultural drift to figure out the reason for geographic acoustic variation of Microhyla fissipes in Taiwan. I recorded calls from 13 populations, among which 8 populations are sympatrically distributed with the closely related M. heymonsi which produces advertisement calls very difficult for human to distinguish and uses almost the same niche. My results showed that there is no significant tuning of calls in sympatric populations, indicating that RCD does not occur between these two species. Population structure constructed by COI demonstrated that M. fissipes in Taiwan can be divided into four clades: northwest, southwest, south and east, while acoustic signals were significantly different among the clades. Acoustic variation was significantly correlated with both geographic distance and genetic distance. On the contrary, the correlations between acoustic distance and climatic factors were not significant. I concluded that geographic variation in advertisement call of Taiwan M. fissipes was mainly caused by genetic drift instead of cultural drift. Sexual selection and ecological selection did not affect the advertisement calls of M. fissipes. My study confirmed that RCD did not occur between M. fissipes and M. heymonsi and provided a better understanding of signal evolution.

    中文摘要 4 Abstract 6 Introduction 8 Chapter 1. Reproductive character displacement 13 Materials and Methods 13 Results 15 Discussion 16 Chapter 2. Hypotheses test of acoustic variation 19 Materials and Methods 19 Results 22 Discussion 25 Conclusion 28 References 29 List of tables and figures 34 Table 1 34 Table 2 34 Table 3 35 Table 4 36 Table 5 37 Figure 1 38 Figure 2 39 Figure 3 40 Figure 4 41 Figure 5 42 Figure 6 43 Figure 7 44 Figure 8 45 Appendix 47

    Aho, A. C., Donner, K., Hyden, C., Larsen, L. O., and Reuter, T. 1988. Low retinal noise in animals with low body temperature allows high visual sensitivity. Nature 334: 348-350.
    Aho, A. C., Donner, K., Helenius, S., Larsen, L. O., and Reuter, T. 1993. Visual performance of the toad (Bufo bufo) at low light levels: retinal ganglion cell responses and prey-catching accuracy. Journal of Comparative Physiology A 172(6): 671-682.
    Albert, A. Y. K., Millar, N. P., and Schluter, D. 2007. Character displacement of male nuptial colour in threespine sticklebacks (Gasterosteus aculeatus). Biological Journal of the Linnean Society 91:37–48.
    Amézquita, A., W. Hodl, Lima, A. P., Castellanos, L., Erdtmann, L., and De Araujo, M. C. 2006. Masking interference and the evolution of the acoustic communication system of the Amazonian dendrobatid frog Allobates femoralis. Evolution 60: 1874-1887.
    Arthur, W. A. 1982. Evolutionary consequences of interspecific competition. Advances in Ecological Research 12:127–187.
    Bee, M. A. 2003. A test of the" dear enemy effect" in the strawberry dart-poison frog (Dendrobates pumilio). Behavioral Ecology and Sociobiology 54(6): 601-610.
    Bee, M. A., Cook, J. M., Love, E. K., O’Bryan, L. R., Pettitt, B. A., Schrode, K., and Vélez, A. 2010. Assessing acoustic signal variability and the potential for sexual selection and social recognition in boreal chorus frogs (Pseudacris maculata). Ethology 116: 564–576.
    Bosch, J., and De la Riva, I. 2004. Are frog calls modulated by the environment? An analysis with anuran species from Bolivia. Canadian Journal of Zoology 82(6): 880-888.
    Brown, W. L. Jr., Wilson, E. O. 1956. Character displacement. Systematic zoology 5: 49–64.
    Campbell, P., Pasch, B., Pino, J. L., Crino, O. L., Phillips, M., and Phelps, S. M. 2010. Geographic variation in the songs of neotropical singing mice: testing the relative importance of drift and local adaptation. Evolution 64:1955–1972.
    Candolin, U. 2003. The use of multiple cues in mate choice. Biological Reviews 78: 575–595.
    Chek, A. A., Bogart, J. P., and Lougheed, S. C. 2003. Mating signal partitioning in multi-species assemblages: a null model test using frogs. Ecology letters 6: 235-247.
    Claridge, M. F., and de Vrijer, P. W. 1994. Reproductive behavior: the role of acoustic signals in species recognition and speciation. In Planthoppers (pp. 216-233). Springer US.
    Cummings, M. E., Bernal, X. E., Reynaga, R., Rand, A. S., and Ryan, M. J. 2008. Visual sensitivity to a conspicuous male cue varies by reproductive state in Physalaemus pustulosus females. Journal of Experimental Biology 211(8): 1203-1210.
    Davis, M. S. 1987. Acoustically mediated neighbor recognition in the North American bullfrog, Rana catesbeiana. Behavioral Ecology and Sociobiology 21: 185-190.
    Elias, D. O., Mason, A. C., and Hebets, E. 2010. A signal-substrate match in the substrate-borne component of a multimodal courtship display. Current Zoology 56(3): 370−378.
    Funk, W. C., Blouin, M. S., Corn, P. S., Maxell, B. A., Pilliod, D. S., Amish, S., and Allendorf, F. W. 2005. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Molecular Ecology 14(2): 483-496.
    Gerhardt. H. C. 1994. The evolution of vocalization in frogs and toads. Annual Review of Ecology, Evolution, and Systematics 25: 293-324.
    Gerhardt, H. C., and Huber, F. 2002. Acoustic communication in insects and anurans: common problems and diverse solutions. University of Chicago Press, Chicago, USA.
    Gomez, D., Richardson, C., Lengagne, T., Plenet, S., Joly, P., Léna, J. P., and Théry, M. 2009. The role of nocturnal vision in mate choice: females prefer conspicuous males in the European tree frog (Hyla arborea). Proceedings of the Royal Society of London B: Biological Sciences 276: 2351-2358.
    Grant, B. R., and Grant, P. R. 1996. Cultural inheritance of song and its role in the evolution of Darwin's finches. Evolution 50(6): 2471-2487.
    Grether, G. F., Losin, N., Anderson, C. N., and Okamoto, K. 2009. The role of interspecific interference competition in character displacement and the evolution of competitor recognition. Biological Reviews 84(4): 617-635.
    Guarnizo, C. E., Amézquita, A., and Bermingham, E. 2009. The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution 50(1): 84-92.
    Höbel, G., and Gerhardt, H. C. 2003. Reproductive character displacement in the acoustic communication system of green tree frogs (Hyla cinerea). Evolution 57: 894–904.
    Irwin, D. E., Thimgan, M. P., and Irwin, J. H. 2008. Call divergence is correlated with geographic and genetic distance in greenish warblers (Phylloscopus trochiloides): a strong role for stochasticity in signal evolution? Journal of Evolutionary Biology 21: 435–448.
    Jang, Y., Hahm, E. H., Lee, H. J., Park, S., Won, Y. J., and Choe, J. C. 2011. Geographic variation in advertisement calls in a tree frog species: gene flow and selection hypotheses. PloS one 6(8): e23297.
    Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G. and Gibson, T.J. 1998. Multiple sequence alignment with Clustal X. Trends in Biochemical Sciences 23: 403-405.
    Kaiser, K., and Hammers, J. L. 2009. The effect of anthropogenic noise on male advertisement call rate in the neotropical treefrog, Dendropsophus triangulum. Behaviour 146(8): 1053-1069.
    Kuramoto, M. 1987. Advertisement calls of two Taiwan Micohylid frogs, Microhyla heymonsi and M. ornate. Zoological Science 4:563–567.
    Lachlan, R. F., and Servedio, M. R. 2004. Song learning accelerates allopatric speciation. Evolution 58(9): 2049-2063.
    Librado, P., and Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11): 1451-1452.
    Lin, A., Jiang, T., Kanwal, J. S., Lu, G., Luo, J., Wei, X., Lou, B., and Feng, J. 2014. Geographical variation in echolocation vocalizations of the Himalayan leaf‐nosed bat: Contribution of morphological variation and cultural drift. Oikos 124(3):364-371.
    Lin, H. D., Chen, Y. R., and Lin, S. M. 2012. Strict consistency between genetic and topographic landscapes of the brown tree frog (Buergeria robusta) in Taiwan. Molecular phylogenetics and evolution 62(1): 251-262.
    Luo, J., Koselj, K., Zsebők, S., Siemers, B. M., and Goerlitz, H. R. 2014. Global warming alters sound transmission: differential impact on the prey detection ability of echolocating bats. Journal of The Royal Society Interface 11(91): 20130961.
    Mayr, E. 1963. Animal species and evolution (Vol. 797). Cambridge, Massachusetts: Belknap Press of Harvard University Press.
    Moriarty, L. E., and Lemmon, A. R. 2010. Reinforcement in chorus frogs: lifetime fitness estimates including intrinsic natural selection and sexual selection against hybrids. Evolution 64: 1748–1761.
    Morton, E. S. 1975. Ecological sources of selection on avian sounds. American Naturalist 109:17–34.
    Monsen, K. J., and Blouin, M. S. 2004. Extreme isolation by distance in a montane frog Rana cascadae. Conservation Genetics 5(6): 827-835.
    Ohmer, M. E., Robertson, J. M., and Zamudio, K. R. 2009. Discordance in body size, colour pattern, and advertisement call across genetically distinct populations in a Neotropical anuran (Dendropsophus ebraccatus). Biological Journal of the Linnean Society 97(2): 298-313.
    Peig, J., and Green, A. J. 2009. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118(12): 1883-1891.
    Peig, J., and Green, A. J. 2010. The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Functional Ecology 24(6): 1323-1332.
    Pfennig, D. W. and K. S. Pfennig. 2012. Development and evolution of character displacement. Annals of the New York Academy of Sciences 1256: 89–107.
    Phelps, S. M., Rand, A. S., and Ryan, M. J. 2007. The mixed-species chorus as public information: túngara frogs eavesdrop on a heterospecific. Behavioral Ecology 18(1): 108-114.
    Preininger, D., Boeckle, M., Sztatecsny, M., and Hödl, W. 2013. Divergent receiver responses to components of multimodal signals in two foot-flagging frog species. PloS one 8(1): e55367.
    Pröhl, H., Koshy, R. A., Mueller, U., Rand, A. S., and Ryan, M. J. 2006. Geographic variation of genetic and behavioral traits in northern and southern túngara frogs. Evolution 60(8): 1669-1679.
    Reichert, M. S., and Gerhardt, H. C. 2012. Socially mediated plasticity in call timing in the gray tree frog, Hyla versicolor. Behavioral Ecology 24(2): 393-401.
    Ritchie, M. G. 2007. Sexual selection and speciation. Annual Review of Ecology, Evolution, and Systematics 38: 79-102.
    Ryan, M. J., Cocroft, R. B., and Wilczynski, W. 1990. The role of environmental selection in intraspecific divergence of mate recognition signals in the cricket frog, Acris crepitans. Evolution 44(7): 1869-1872.
    Sætre, G.-P., Moum, T., Bures, S., Kral, M., Adamjan, M., and Moreno, J. 1997, A sexually selected character displacement in flycatchers reinforces premating isolation. Nature 387: 6633:589–592.
    Sewall, K. B. 2009. Limited adult vocal learning maintains call dialects but permits pair-distinctive calls in red crossbills. Animal Behaviour 77(5): 1303-1311.
    Snell-Rood, E. C. 2012. The effect of climate on acoustic signals: does atmospheric sound absorption matter for bird song and bat echolocation? The Journal of the Acoustical Society of America 131(2): 1650-1658.
    Sun, K., Luo, L., Kimball, R. T., Wei, X., Jin, L., Jiang, T., Li, G., and Feng, J. 2013. Geographic variation in the acoustic traits of greater horseshoe bats: Testing the importance of drift and ecological selection in evolutionary processes. PLoS ONE 8(8): e70368.
    Tan, W. H., Tsai, C. G., Lin, C., and Lin, Y. K. 2014. Urban canyon effect: storm drains enhance call characteristics of the Mientien tree frog. Journal of Zoology 294(2): 77-84.
    Tyack, P. L. 2008. Convergence of calls as animals form social bonds, active compensation for noisy communication channels, and the evolution of vocal learning in mammals. Journal of Comparative Psychology 122(3): 319-331.
    Uyeda, J. C., Arnold, S. J., Hohenlohe, P. A., and Mead, L. S. 2009. Drift promotes speciation by sexual selection. Evolution 63(3): 583-594.
    Vargas-Salinas, F., and Amézquita, A. 2013. Stream noise, hybridization, and uncoupled evolution of call traits in two lineages of poison frogs: Oophaga histrionica and Oophaga lehmanni. PLoS ONE 8(10): e77545.
    Wilkins, M. R., Seddon, N., and Safran, R. J. 2013. Evolutionary divergence in acoustic signals: causes and consequences. Trends in ecology & evolution 28(3): 156-166.
    Witte, K., Farris, H.E., Ryan, M.J. and Wilczynski, W. 2005. How cricket frog females deal with a noisy world: habitat-related differences in auditory tuning. Behavioral Ecology 16: 571–579.
    Wright, S. 1943. Isolation by distance. Genetics 28(2): 114-138.
    Ziegler, L., Arim, M., and Narins, P. M. 2011. Linking amphibian call structure to the environment: the interplay between phenotypic flexibility and individual attributes. Behavioral Ecology 22: 520–526.
    林彥博,2009。臺灣產黑蒙西氏小雨蛙(Microhyla heymonsi)族群遺傳結構與親緣地理學研究。國立臺灣師範大學生命科學系碩士論文,台北。
    曾姿霖,2012。三種共域狹口蛙的生態棲位區隔。國立嘉義大學生物資源學系碩士論文,嘉義。

    下載圖示
    QR CODE