研究生: |
李希捷 Lee, Hsi-Chieh |
---|---|
論文名稱: |
不同碳水化合物攝取頻率對耐力運動之腸道損傷及腸胃舒適度的影響 Effects of Different Frequency of Carbohydrate Intake on Intestinal Injury and Gastrointestinal Comfort during Endurance Exercise |
指導教授: |
王鶴森
Wang, Ho-Seng |
口試委員: |
吳慧君
Wu, Huey-June 陳勇志 Chen, Yung-Chih 王鶴森 Wang, Ho-Seng |
口試日期: | 2023/06/26 |
學位類別: |
碩士 Master |
系所名稱: |
體育與運動科學系 Department of Physical Education and Sport Sciences |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 長跑 、馬拉松 、運動營養 |
英文關鍵詞: | long-distance running, marathon, exercise nutrition |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300616 |
論文種類: | 學術論文 |
相關次數: | 點閱:99 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:長距離耐力運動容易導致腸道損傷並破壞腸道的完整性,亦會引發腸胃不適感,而運動中適當地攝取碳水化合物不但能降低腸胃不適,也能減緩腸道損傷。目的:探討長距離跑步中以不同碳水化合物攝取頻率對腸道損傷及腸胃舒適度之影響。方法:採重複量數、平衡次序設計,招募10位有馬拉松經驗之男性,於跑步機上進行 32 公里 65% V̇O2max之固定速度跑步及接續之8公里計時測驗,並於運動中進行每 5 公里攝取 22 克的高頻率攝取 (HCF) 及每 7.5 公里攝取 33 克的低頻率攝取 (LCF) 之不同碳水化合物攝取頻率,但總量皆為 132 克的兩種實驗處理,並測量基準值、運動第30公里及運動後立即之腸道損傷指標(腸道脂肪酸結合蛋白,I-FABP;內毒素),且於運動前、運動中每10公里及運動後立即測量腸胃舒適度量表 (腹部不適量表,AD;腹部飽足感量表,GF),比較處理間腸道損傷與腸胃舒適度之差異。結果:(1) I-FABP、內毒素:皆無處理及距離間的交互作用;I-FABP 30~40公里曲線下面積與相對強度呈正相關 (r = 0.455,p < .05)。(2) AD、GF:皆無處理及距離間的交互作用;AD 處理主效果 LCF < HCF (p < .05);AD 曲線下面積: 30~40 公里,LCF < HCF (p < .05)。(3) I-FABP變化量與腹部不適感的相關為 r = - 0.151 (p > .05),未達顯著。結論:在 40 公里的跑步運動中,每 5 公里攝取 22 克或每 7.5 公里攝取 33 克碳水化合物並不會影響腸道損傷,但隨著距離增加,腹部不適感會上升,同時高頻率的攝取會有較高的腹部不適感,但不影響運動表現。
Background: Endurance exercise is likely to cause intestinal injury and increase gastrointestinal discomfort. Intaking carbohydrates during exercise can relieve gastrointestinal discomfort and alleviate intestinal injuries. Purpose: To examine the effects of different frequencies of carbohydrate intake on intestinal injury and gastrointestinal comfort during 40 km running. Method: 10 men (PB: 3 hr 8 min ± 17 min, V̇O2max :57.3 ± 5.7 ml/kg/min) were required to perform two trials of the 32 km at 65% V̇O2max following an 8 km time trial. Subjects participated in the following two trials in a counterbalanced, crossover design. 1.HCF (high carbohydrate frequency): 22 grams per 5 km. 2.LCF (low carbohydrate frequency): 33 grams per 7.5 km in (LCF). Total energy gel consumed in both trials were 132g carbohydrate. Plasma intestinal fatty-acid binding protein (I-FABP), endotoxin, and the gastrointestinal comfort scales (abdominal discomfort, AD; gut fullness, GF) were measured. Results: (1) I-FABP, endotoxin: No interactions between treatment and distance; Area under curve of I-FABP in 30-40 km was positively correlated with relative intensity (r = 0.455,p < .05). (2) AD, GF: No interactions between treatment and distance; treatment main effect of AD was LCF < HCF (p < .05); Area under curve of AD was LCF < HCF at 30-40 km (p < .05). (3) No correlation between the change in I-FABP and AD (r = - 0.151, p > .05). Conclusion: In a 40-km run, consuming 22 grams of carbohydrates per 5 km or 33 grams per 7.5 km did not affect intestinal damage. Abdominal discomfort increased with distance and HCF causes higher abdominal discomfort but does not affect performance.
Barberio, M. D., Elmer, D. J., Laird, R. H., Lee, K. A., Gladden, B., & Pascoe, D. D. (2015). Systemic LPS and inflammatory response during consecutive days of exercise in heat. International journal of Sports Medicine, 36(3), 262-270. https://doi.org/10.1055/s-0034-1389904
Borg, G. (1970). Perceived exertion as an indicator of somatic stress. Scandinavian Journal of Rehabilitation Medicine, 2(2), 92-98.
Bruce, R. A., Blackmon, J. R., Jones, J. W., & Strait, G. (1963). Exercising testing in adult normal subjects and cardiac patients. Pediatrics, 32, Suppl 742-756.
Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., Delzenne, N. M., Alessi, M. C., & Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761-1772. https://doi.org/10.2337/db06-1491
Cermak, N. M., & van Loon, L. J. (2013). The use of carbohydrates during exercise as an ergogenic aid. Sports Medicine, 43(11), 1139-1155. https://doi.org/10.1007/s40279-013-0079-0
Chantler, S., Griffiths, A., Matu, J., Davison, G., Holliday, A., & Jones, B. (2022). A systematic review: Role of dietary supplements on markers of exercise-associated gut damage and permeability. PLoS One, 17(4). https://doi.org/10.1371/journal.pone.0266379
Chantler, S., Griffiths, A., Matu, J., Davison, G., Jones, B., & Deighton, K. (2021). The effects of exercise on indirect markers of gut damage and permeability: A systematic review and meta-analysis. Sports Medicine, 51(1), 113-124. https://doi.org/10.1007/s40279-020-01348-y
Chelakkot, C., Ghim, J., & Ryu, S. H. (2018). Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental and Molecular Medicine, 50(8), 1-9. https://doi.org/10.1038/s12276-018-0126-x
Chowdhury, A. H., Murray, K., Hoad, C. L., Costigan, C., Marciani, L., Macdonald, I. A., Bowling, T. E., & Lobo, D. N. (2016). Effects of bolus and continuous nasogastric feeding on gastric emptying, small bowel water content, superior mesenteric artery blood flow, and plasma hormone concentrations in healthy adults: a randomized crossover study. Annals of Surgery, 263(3), 450-457. https://doi.org/-10.1097/sla.0000000000001110
Costa, R. J., Snipe, R., Camões-Costa, V., Scheer, V., & Murray, A. (2016). The impact of gastrointestinal symptoms and dermatological injuries on nutritional intake and hydration status during ultramarathon events. Sports Medicine Open, 2, 16. https://doi.org/10.1186/s40798-015-0041-9
Costa, R. J. S., Camões-Costa, V., Snipe, R. M. J., Dixon, D., Russo, I., & Huschtscha, Z. (2019). Impact of exercise-induced hypohydration on gastrointestinal integrity, function, symptoms, and systemic endotoxin and inflammatory profile. Journal of Applied Physiology, 126(5), 1281-1291. https://doi.org/10.1152/japplphysiol.01032.2018
Costa, R. J. S., Miall, A., Khoo, A., Rauch, C., Snipe, R., Camões-Costa, V., & Gibson, P. (2017). Gut-training: the impact of two weeks repetitive gut-challenge during exercise on gastrointestinal status, glucose availability, fuel kinetics, and running performance. Applied Physiology, Nutrition, and Metabolism, 42(5), 547-557. https://doi.org/10.1139/apnm-2016-0453
Costa, R. J. S., Oliver, S. J., Laing, S. J., Walters, R., Bilzon, J. L. J., & Walsh, N. P. (2009). Influence of Timing of Postexercise Carbohydrate-Protein Ingestion on Selected Immune Indices. International Journal of Sport Nutrition and Exercise Metabolism, 19(4), 366-384. https://doi.org/10.1123/ijsnem.19.4.366
Costa, R. J. S., Snipe, R. M. J., Kitic, C. M., & Gibson, P. R. (2017). Systematic review: exercise-induced gastrointestinal syndrome-implications for health and intestinal disease. Alimentary Pharmacology and Therapeutics, 46(3), 246-265. https://doi.org/10.1111/apt.14157
De Oliveira, E. P., & Burini, R. C. (2009). The impact of physical exercise on the gastrointestinal tract. Current Opinion in Clinical Nutrition and Metabolic Care, 12(5), 533-538. https://doi.org/10.1097/MCO.0b013e32832e6776
De Oliveira, E. P., Burini, R. C., & Jeukendrup, A. (2014). Gastrointestinal complaints during exercise: prevalence, etiology, and nutritional recommendations. Sports Medicine, 44 Suppl 1(Suppl 1), S79-85. https://doi.org/10.1007/s40279-014-0153-2
Derikx, J. P., Luyer, M. D., Heineman, E., & Buurman, W. A. (2010). Non-invasive markers of gut wall integrity in health and disease. World Journal of Gastroenterology, 16(42), 5272-5279. https://doi.org/10.3748/wjg.v16.i42.5272
Dill, D. B., & Costill, D. L. (1974). Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. Journal of Applied Physiology, 37(2), 247-248. https://doi.org/10.1152/jappl.1974.37.2.247
Duchman, S. M., Ryan, A. J., Schedl, H. P., Summers, R. W., Bleiler, T. L., & Gisolfi, C. V. (1997). Upper limit for intestinal absorption of a dilute glucose solution in men at rest. Medicine and Science in Sports and Exercise, 29(4), 482-488. https://doi.org/10.1097/00005768-199704000-00009
Edinburgh, R. M., Hengist, A., Smith, H. A., Travers, R. L., Koumanov, F., Betts, J. A., Thompson, D., Walhin, J.-P., Wallis, G. A., & Hamilton, D. L. (2018). Preexercise breakfast ingestion versus extended overnight fasting increases postprandial glucose flux after exercise in healthy men. American Journal of Physiology-Endocrinology and Metabolism, 315(5), E1062-E1074.
Edwards, K. H., Ahuja, K. D., Watson, G., Dowling, C., Musgrave, H., Reyes, J., Cherry, J., & Kitic, C. M. (2021). The influence of exercise intensity and exercise mode on gastrointestinal damage. Applied Physiology, Nutrition, and Metabolism, 46(9), 1105-1110. https://doi.org/10.1139/apnm-2020-0883
Eriksen, M., & Waaler, B. A. (1994). Priority of blood flow to splanchnic organs in humans during pre- and post-meal exercise. Acta Physiologica Scandinavica, 150(4), 363-372. https://doi.org/10.1111/j.1748-1716.1994.tb09700.x
Evennett, N. J., Petrov, M. S., Mittal, A., & Windsor, J. A. (2009). Systematic review and pooled estimates for the diagnostic accuracy of serological markers for intestinal ischemia. World Journal of Surgery, 33(7), 1374-1383. https://doi.org/10.1007/s00268-009-0074-7
Flood, T. R., Montanari, S., Wicks, M., Blanchard, J., Sharp, H., Taylor, L., Kuennen, M. R., & Lee, B. J. (2020). Addition of pectin-alginate to a carbohydrate beverage does not maintain gastrointestinal barrier function during exercise in hot-humid conditions better than carbohydrate ingestion alone. Applied Physiology, Nutrition, and Metabolism, 45(10), 1145-1155. https://doi.org/10.1139/apnm-2020-0118
Gaskell, S. K., Burgell, R., Wiklendt, L., Dinning, P. G., & Costa, R. J. S. (2023). Impact of exercise duration on gastrointestinal function and symptoms. Journal of Applied Physiology, 134(1), 160-171. https://doi.org/10.1152/japplphysiol.00393.2022
Gill, S. K., Hankey, J., Wright, A., Marczak, S., Hemming, K., Allerton, D. M., Ansley-Robson, P., & Costa, R. J. (2015). The impact of a 24-h ultra-marathon on circulatory endotoxin and cytokine profile. International journal of Sports Medicine, 36(8), 688-695. https://doi.org/10.1055/s-0034-1398535
Hawley, J. A., & Leckey, J. J. (2015). Carbohydrate dependence during prolonged, intense endurance exercise. Sports Medicine, 45, 5-12. https://doi.org/10.1007/s40279-015-0400-1
Holmes, J. H. t., Lieberman, J. M., Probert, C. B., Marks, W. H., Hill, M. E., Paull, D. L., Guyton, S. W., Sacchettini, J., & Hall, R. A. (2001). Elevated intestinal fatty acid binding protein and gastrointestinal complications following cardiopulmonary bypass: a preliminary analysis. Journal of Surgical Research, 100(2), 192-196. https://doi.org/10.1006/jsre.2001.6237
Hoogervorst, D., van der Burg, N., Versteegen, J. J., Lambrechtse, K. J., Redegeld, M. I., Cornelissen, L. A. J., & Wardenaar, F. C. (2019). Gastrointestinal Complaints and Correlations with Self-Reported Macronutrient Intake in Independent Groups of (Ultra)Marathon Runners Competing at Different Distances. Sports (Basel), 7(6). https://doi.org/10.3390/sports7060140
Horowitz, J. F., Mora-Rodriguez, R., Byerley, L. O., & Coyle, E. F. (1996). Lipolytic suppression following carbohydrate ingestion limits fat oxidation during exercise. Medicine and Science in Sports and Exercise, 28(5), 74.
Jeukendrup, A., Vet-Joop, K., Sturk, A., Stegen, J., Senden, J., Saris, W., & Wagenmakers, A. (2000). Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men. Clinical science, 98(1), 47-55.
Jeukendrup, A. E. (2004). Carbohydrate intake during exercise and performance. Nutrition, 20(7-8), 669-677. https://doi.org/10.1016/j.nut.2004.04.017
Jeukendrup, A. E. (2017). Training the Gut for Athletes. Sports Medicine, 47(1), 101-110. https://doi.org/10.1007/s40279-017-0690-6
Jeukendrup, A. E., & Jentjens, R. (2000). Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. Sports Medicien, 29(6), 407-424. https://doi.org/10.2165/00007256-200029060-00004
Jeukendrup, A. E., & Wallis, G. A. (2005). Measurement of substrate oxidation during exercise by means of gas exchange measurements. International journal of sports medicine, 26(S 1), S28-S37.
Jones, A. M., & Doust, J. H. (1996). A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. Journal of Sports Sciences, 14(4), 321-327. https://doi.org/10.1080/02640419608727717
Jonvik, K. L., Lenaerts, K., Smeets, J. S. J., Kolkman, J. J., LJC, V. A. N. L., & Verdijk, L. B. (2019). Sucrose but not nitrate ingestion reduces strenuous cycling-induced intestinal injury. Medicine and Science in Sports and Exercise, 51(3), 436-444. https://doi.org/10.1249/mss.0000000000001800
Karahanoğlu, A. (2022). Psychological effects of energy gels: An investigation into runners’ energy gel choice and consumption strategies in marathon running. International Journal of Food Design, 7(1), 59-78.
Karhu, E., Forsgård, R. A., Alanko, L., Alfthan, H., Pussinen, P., Hämäläinen, E., & Korpela, R. (2017). Exercise and gastrointestinal symptoms: running-induced changes in intestinal permeability and markers of gastrointestinal function in asymptomatic and symptomatic runners. European Journal of Applied Physiology, 117(12), 2519-2526. https://doi.org/10.1007/s00421-017-3739-1
Keeffe, E. B., Lowe, D. K., Goss, J. R., & Wayne, R. (1984). Gastrointestinal symptoms of marathon runners. The Western Journal Medicine, 141(4), 481-484.
Kozlowski, K. F., Ferrentino-DePriest, A., & Cerny, F. (2021). Effects of energy gel ingestion on blood glucose, lactate, and performance measures during prolonged cycling. The Journal of Strength and Conditioning Research, 35(11), 3111-3119. https://doi.org/10.1519/jsc.0000000000003297
Kwiatek, M. A., Menne, D., Steingoetter, A., Goetze, O., Forras-Kaufman, Z., Kaufman, E., Fruehauf, H., Boesiger, P., Fried, M., & Schwizer, W. (2009). Effect of meal volume and calorie load on postprandial gastric function and emptying: studies under physiological conditions by combined fiber-optic pressure measurement and MRI. American Journal of Physiology-Gastrointestinal and Liver Physiology, 297(5), G894-G901.
Lambert, G. P. (2008). Intestinal barrier dysfunction, endotoxemia, and gastrointestinal symptoms: the 'canary in the coal mine' during exercise-heat stress? Medicine and Sport Science, 53, 61-73. https://doi.org/10.1159/000151550
Lambert, G. P., Broussard, L. J., Mason, B. L., Mauermann, W. J., & Gisolfi, C. V. (2001). Gastrointestinal permeability during exercise: effects of aspirin and energy-containing beverages. Journal of Applied Physiology, 90(6), 2075-2080. https://doi.org/10.1152/jappl.2001.90.6.2075
Lambert, G. P., Lang, J., Bull, A., Pfeifer, P. C., Eckerson, J., Moore, G., Lanspa, S., & O'Brien, J. (2008). Fluid restriction during running increases GI permeability. International journal of Sports Medicine, 29(3), 194-198. https://doi.org/10.1055/s-2007-965163
Loudon, C. P., Corroll, V., Butcher, J., Rawsthorne, P., & Bernstein, C. N. (1999). The effects of physical exercise on patients with Crohn’s disease. The American Journal of Gastroenterology, 94(3), 697-703. https://doi.org/https://doi.org/10.1016/S0002-9270(98)00820-X
Ma, T. Y. (1997). Intestinal epithelial barrier dysfunction in Crohn's disease. Proceedings of the Society for Experimental Biology and Medicine, 214(4), 318-327. https://doi.org/10.3181/00379727-214-44099
Marchiando, A. M., Graham, W. V., & Turner, J. R. (2010). Epithelial barriers in homeostasis and disease. Annual Review of Pathology, 5, 119-144. https://doi.org/10.1146/-annurev.pathol.4.110807.092135
Mears, S. A., Boxer, B., Sheldon, D., Wardley, H., Tarnowski, C. A., James, L. J., & Hulston, C. J. (2020). Sports drink intake pattern affects exogenous carbohydrate oxidation during running. Medicine and Science in Sports and Exercise, 52(9), 1976-1982. https://doi.org/10.1249/mss.0000000000002334
Menzies, C., Wood, M., Thomas, J., Hengist, A., Walhin, J. P., Jones, R., Tsintzas, K., Gonzalez, J. T., & Betts, J. A. (2020). Frequent carbohydrate ingestion reduces muscle glycogen depletion and postpones fatigue relative to a single bolus. International Journal of Sport Nutrition and Exercise Metabolism, 30(3), 203–209. https://doi.org/10.1123/ijsnem.2019-0291
Mitchell, J. B., & Voss, K. W. (1991). The influence of volume on gastric emptying and fluid balance during prolonged exercise. Medicine and Science in Sports and Exercise, 23(3), 314-319.
Moses, F. M. (2005). Exercise-associated Intestinal Ischemia. Current Sports Medicine Reports, 4(2), 91-95. doi: 10.1097/01.csmr.0000306079.74945.ea.
Neal, W. N., Jones, C. D., Pekmezi, D., & Motl, R. W. (2022). Physical activity in adults with Crohn’s disease: A scoping review. Crohn's and Colitis 360, 4(2). https://doi.org/10.1093/crocol/otac022
Ng, Q. Y., Lee, K. W., Byrne, C., Ho, T. F., & Lim, C. L. (2008). Plasma endotoxin and immune responses during a 21-km road race under a warm and humid environment. Annals-Acadamy of Medicine Singapore, 37(4), 307.
Ogoh, S. (2008). Autonomic control of cerebral circulation: exercise. Medicine and Science Sports and Exercise, 40(12), 2046-2054. https://doi.org/10.1249/MSS.0b013-e318180bc6f
Pals, K. L., Chang, R. T., Ryan, A. J., & Gisolfi, C. V. (1997). Effect of running intensity on intestinal permeability. Journal of Applied Physiology, 82(2), 571-576. https://doi.org/10.1152/jappl.1997.82.2.571
Park, J. H., Lee, D. H., Kim, S. I., Kim, N. K., & Jeon, J. Y. (2020). Moderate to vigorous physical activity participation associated with better quality of life among breast and colorectal cancer survivors in Korea. BMC Cancer, 20(1), 365. https://doi.org/10.1186/s12885-020-06819-z
Perko, M. J. (2001). Duplex ultrasound for assessment of superior mesenteric artery blood flow. European Journal of Vascular Endovascular Surgery, 21(2), 106-117. https://doi.org/10.1053/ejvs.2001.1313
Peters, H. P., Bos, M., Seebregts, L., Akkermans, L. M., van Berge Henegouwen, G. P., Bol, E., Mosterd, W. L., & de Vries, W. R. (1999). Gastrointestinal symptoms in long-distance runners, cyclists, and triathletes: prevalence, medication, and etiology. American Journal of Gastroenterology, 94(6), 1570-1581. https://doi.org/10.1111-/j.1572-0241.1999.01147.x
Peters, H. P., Wiersma, J. W., Koerselman, J., Akkermans, L. M., Bol, E., Mosterd, W. L., & de Vries, W. R. (2000). The effect of a sports drink on gastroesophageal reflux during a run-bike-run test. International journal of Sports Medicine, 21(1), 65-70. https://doi.org/10.1055/s-2000-8858
Pfeiffer, B., Cotterill, A., Grathwohl, D., Stellingwerff, T., & Jeukendrup, A. E. (2009). The effect of carbohydrate gels on gastrointestinal tolerance during a 16-km run. International Journal of Sport Nutrition and Exercise Metabolism, 19(5), 485-503. https://doi.org/10.1123/ijsnem.19.5.485
Pfeiffer, B., Stellingwerff, T., Hodgson, A. B., Randell, R., Pöttgen, K., Res, P., & Jeukendrup, A. E. (2012). Nutritional intake and gastrointestinal problems during competitive endurance events. Medicine & Science in Sports & Exercise, 44(2), 344-351. https://doi.org/10.1249/MSS.0b013e31822dc809
Pugh, J. N., Kirk, B., Fearn, R., Morton, J. P., & Close, G. L. (2018). Prevalence, severity and potential nutritional causes of gastrointestinal symptoms during a marathon in recreational runners. Nutrients, 10(7), 811.
Qamar, M. I., & Read, A. E. (1987). Effects of exercise on mesenteric blood flow in man. Gut, 28(5), 583-587. https://doi.org/10.1136/gut.28.5.583
Ravich, W. J., Bayless, T. M., & Thomas, M. (1983). Fructose: incomplete intestinal absorption in humans. Gastroenterology, 84(1), 26-29.
Rehrer, N., Wagenmakers, A., Beckers, E., Halliday, D., Leiper, J., Brouns, F., Maughan, R., Westerterp, K., & Saris, W. (1992). Gastric emptying, absorption, and carbohydrate oxidation during prolonged exercise. Journal of Applied Physiology, 72(2), 468-475.
Rehrer, N. J., Goes, E., DuGardeyn, C., Reynaert, H., & DeMeirleir, K. (2005). Effect of carbohydrate on portal vein blood flow during exercise. International journal of Sports Medicine, 26(3), 171-176. https://doi.org/10.1055/s-2004-820957
Rehrer, N. J., & Meijer, G. A. (1991). Biomechanical vibration of the abdominal region during running and bicycling. The Journal of Sports Medicine and Physical Fitness, 31(2), 231-234.
Rehrer, N. J., Smets, A., Reynaert, H., Goes, E., & De Meirleir, K. (2001). Effect of exercise on portal vein blood flow in man. Medicine and Science in Sports and Exercise, 33(9), 1533-1537. https://doi.org/10.1097/00005768-200109000-00017
Rescigno, M. (2011). The intestinal epithelial barrier in the control of homeostasis and immunity. Trends in Immunology, 32(6), 256-264. https://doi.org/10.1016/j.it-2011.04.003
Ribeiro, F. M., Petriz, B., Marques, G., Kamilla, L. H., & Franco, O. L. (2021). Is there an exercise-Intensity threshold capable of avoiding the leaky gut? Frontiers in Nutrition, 8, 627289. https://doi.org/10.3389/fnut.2021.627289
Riddoch, C., & Trinick, T. (1988). Gastrointestinal disturbances in marathon runners. British Journal of Sports Medicine, 22(2), 71-74. https://doi.org/10.1136/bjsm.22.2.71
Rodriguez, N. R., Di Marco, N. M., & Langley, S. (2009). American College of Sports Medicine position stand. Nutrition and athletic performance. Medicine and Science in Sports and Exercise, 41(3), 709-731. https://doi.org/10.1249/MSS.0b013e31890eb86
Scheer, V. (2019). Participation trends of ultra endurance events. Sports Medicine and Arthroscopy Review, 27(1), 3-7. https://doi.org/10.1097/jsa.0000000000000198
Sessions, J., Bourbeau, K., Rosinski, M., Szczygiel, T., Nelson, R., Sharma, N., & Zuhl, M. (2016). Carbohydrate gel ingestion during running in the heat on markers of gastrointestinal distress. European Journal of Sport Science, 16(8), 1064-1072. https://doi.org/10.1080/17461391.2016.1140231
Snipe, R. M. J., & Costa, R. J. S. (2018). Does the temperature of water ingested during exertional-heat stress influence gastrointestinal injury, symptoms, and systemic inflammatory profile? Journal of Science and Medicine in Sport, 21(8), 771-776. https://doi.org/10.1016/j.jsams.2017.12.014
Snipe, R. M. J., Khoo, A., Kitic, C. M., Gibson, P. R., & Costa, R. J. S. (2017). Carbohydrate and protein intake during exertional heat stress ameliorates intestinal epithelial injury and small intestine permeability. Applied Physiology, Nutrition and Metabolism, 42(12), 1283-1292. https://doi.org/10.1139/apnm-2017-0361
Snipe, R. M. J., Khoo, A., Kitic, C. M., Gibson, P. R., & Costa, R. J. S. (2018). The impact of exertional-heat stress on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profile. European Journal of Applied Physiology, 118(2), 389-400. https://doi.org/10.1007/s00421-017-3781-z
Stellingwerff, T., & Cox, G. R. (2014). Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations. Applied Physiology, Nutrition, and Metabolism, 39(9), 998-1011. https://doi.org/10.1139/apnm-2014-0027
Stocks, B., Betts, J. A., & McGawley, K. (2016). Effects of carbohydrate dose and frequency on metabolism, gastrointestinal discomfort, and cross-country skiing performance. Scandinavian Journal of Medicine Science in Sports, 26(9), 1100-1108. https://doi.org/10.1111/sms.12544
Stuempfle, K. J., & Hoffman, M. D. (2015). Gastrointestinal distress is common during a 161-km ultramarathon. Journal of Sports Sciences, 33(17), 1814-1821. https://doi.org/10.1080/02640414.2015.1012104
Stuempfle, K. J., Valentino, T., Hew-Butler, T., Hecht, F. M., & Hoffman, M. D. (2016). Nausea is associated with endotoxemia during a 161-km ultramarathon. Journal of Sports Sciences, 34(17), 1662-1668. https://doi.org/10.1080/02640414.2015.1130238
Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College Cardiology, 37(1), 153-156. https://doi.org/10.1016/s0735-1097(00)01054-8
Ter Steege, R., & Kolkman, J. (2012). The pathophysiology and management of gastrointestinal symptoms during physical exercise, and the role of splanchnic blood flow. Alimentary Pharmacology and Therapeutics, 35(5), 516-528.
Ter Steege, R. W., Van der Palen, J., & Kolkman, J. J. (2008). Prevalence of gastrointestinal complaints in runners competing in a long-distance run: an internet-based observational study in 1281 subjects. Scandinavian Journal of Gastroenterology, 43(12), 1477-1482. https://doi.org/10.1080/00365520802321170
Thuijls, G., van Wijck, K., Grootjans, J., Derikx, J. P., van Bijnen, A. A., Heineman, E., Dejong, C. H., Buurman, W. A., & Poeze, M. (2011). Early diagnosis of intestinal ischemia using urinary and plasma fatty acid binding proteins. Annals of Surgery, 253(2), 303-308. https://doi.org/10.1097/SLA.0b013e318207a767
Torres, J., Mehandru, S., Colombel, J.-F., & Peyrin-Biroulet, L. (2017). Crohn's disease. The Lancet, 389(10080), 1741-1755. https://doi.org/https://doi.org/10.1016/S0140-6736(16)31711-1
Ungaro, R., Mehandru, S., Allen, P. B., Peyrin-Biroulet, L., & Colombel, J. F. (2017). Ulcerative colitis. Lancet, 389(10080), 1756-1770. https://doi.org/10.1016/s0140-6736(16)32126-2
Van Nieuwenhoven, M. A., Brummer, R. M., & Brouns, F. (2000). Gastrointestinal function during exercise: comparison of water, sports drink, and sports drink with caffeine. Journal of Applied Physiology, 89(3), 1079-1085. https://doi.org/10.1152/jappl.-2000.89.3.1079
Van Venrooij, N. F. J., Wardenaar, F. C., Hoogervorst, D., Senden, J. M. G., van Dijk, J. W., & Jonvik, K. L. (2022). The association between gastrointestinal injury, complaints, and food intake in 60-km ultramarathon runners. Applied Physiology, Nutrition, and Metabolism, 47(5), 547-554. https://doi.org/10.1139/apnm-2021-0711
Van Wijck, K., Lenaerts, K., Grootjans, J., Wijnands, K. A., Poeze, M., van Loon, L. J., Dejong, C. H., & Buurman, W. A. (2012). Physiology and pathophysiology of splanchnic hypoperfusion and intestinal injury during exercise: strategies for evaluation and prevention. American Journal of Physiology-Gastrointestinal Liver Physiology, 303(2), G155-168. https://doi.org/10.1152/ajpgi.00066.2012
Van Wijck, K., Lenaerts, K., van Loon, L. J., Peters, W. H., Buurman, W. A., & Dejong, C. H. (2011). Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS One, 6(7), e22366. https://doi.org/10.1371/journal.pone.0022366
Van Wijck, K., Pennings, B., van Bijnen, A. A., Senden, J. M., Buurman, W. A., Dejong, C. H., van Loon, L. J., & Lenaerts, K. (2013). Dietary protein digestion and absorption are impaired during acute postexercise recovery in young men. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 304(5), R356-361. https://doi.org/10.1152/ajpregu.00294.2012
Walter, E., Gibson, O. R., Stacey, M., Hill, N., Parsons, I. T., & Woods, D. (2021). Changes in gastrointestinal cell integrity after marathon running and exercise-associated collapse. European Journal of Applied Physiology, 121, 1179-1187.
Wittkopf, N., Neurath, M. F., & Becker, C. (2014). Immune-epithelial crosstalk at the intestinal surface. Journal of Gastroenterology, 49(3), 375-387. https://doi.org/10.1007/s00535-013-0929-4
Yeh, Y. J., Law, L. Y., & Lim, C. L. (2013). Gastrointestinal response and endotoxemia during intense exercise in hot and cool environments. European Journal of Applied Physiology, 113(6), 1575-1583. https://doi.org/10.1007/s00421-013-2587-x