簡易檢索 / 詳目顯示

研究生: 葛敬
Ko, Ching
論文名稱: 兩性分散劑的合成以及對於氧化石墨烯砂漿性質的影響
指導教授: 許貫中
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 101
中文關鍵詞: 氧化石墨烯兩性離子型磺酸系砂漿
英文關鍵詞: graphene oxide, amphoteric, sulfonic, mortar
DOI URL: http://doi.org/10.6345/NTNU201900246
論文種類: 學術論文
相關次數: 點閱:162下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究目的在於合成一種兩性離子型磺酸系分散劑來改善氧化石墨烯在水泥基材料中的分散性並提升漿體的機械性質。使用甲基丙烯酸二甲基丙基磺酸胺乙酯 (N-(3-sulfopropyl)-N- methacroyloxyethyl-N,N-dimethyl-ammonium betaine)與丙烯醯胺(Acrylamide)為單體,起始劑為Benzoyl peroxide,經由自由基聚合反應得到分散劑Poly(sulfobetaine-co-acryl amide)(PSA),化學結構經由FT-IR和1H-NMR光譜鑑定,以GPC測量聚合物的分子量。石墨烯則是經由Hummers法氧化成氧化石墨烯,化學結構再經由FT-IR、RAMAN、SEM觀察其結構變化。
    經由沉降體積、粒徑分布、界達電位和流變性質實驗結果顯示,添加PSA42 (Mw = 5.4×105)在氧化石墨烯人工孔隙溶液中的分散效果優於其他分子量之聚合物,因PSA42於氧化石墨烯表面有較小的粒徑、較高的界達電位、較低的黏度以及在水泥砂漿中添加10wt% PSA42和0.05 wt% GOA的28天抗壓強度為32.5MPa、抗彎強度為7.1MPa,與控制組相比能分別提升84%、97%;最後經由XRD和DSC實驗則觀察到在水泥漿中添加GO能有效加速和增加前期水化產物的形成。

    This research focused on the enhancing the dispersibility of graphene oxide in the cement-based materials, and improving the mechanical properties. First, we synthesized a amphoteric dispersant, Poly(sulfobetaine -co-acrylamide) (PSA)) is synthesized by N-(3-sulfopropyl)-N-methacroyloxyethyl-N,N-dimethyl-ammonium betaine(SB) and acrylamide as monomer, benzoyl peroxide as initiator. FT-IR, 1H-NMR was used to identify the functional groups of the dispersant. Molecular weight of the polymer was measured by GPC. Then, we used Hummers Method to oxidize graphene, and FT-IR, RAMAN, SEM to observe the change of chemical structure.
    The experimental results of sedimentation volume, particle size distribution, zeta potential and rheological properties showed that the dispersion effect of PSA42 (Mw = 5.4×105) in the graphene oxide artificial pore solution is better than other polymers, because PSA42 causes small particle size, high zeta potential, low viscosity. The results of compressive and flexural strength test of 28-day cement mortar with 10 wt% PSA42 and 0.05 wt% GOA were 32.5MPa and 7.1MPa respectively, which increased by 84% and 91% respectively compared with the control sample. Finally, it was observed through XRD and DSC experiments that the addition of GO to the cement paste can effectively accelerate and increase the early formation of hydration products.

    摘要 ii Abstract iii 目次 iv 圖次 viii 表次 xii 第一章緒論 1 1-1研究背景 1 1-2研究動機 1 第二章 文獻回顧 4 2-1石墨烯簡介 4 2-2氧化石墨烯簡介 10 2-3高分子界面活性劑與分散機制 13 2-3-1靜電排斥穩定理論 15 2-3-2立體障礙效應 18 2-4水泥 20 2-4-1卜特蘭水泥 20 2-4-2水泥之水化 20 2-4-3氧化石墨烯催化水泥水化反應 22 2-5氧化石墨烯分散在水泥漿體中的機制與困境 25 2-6添加與分散氧化石墨烯水泥砂漿文獻彙整 28 第三章 實驗流程與方法 29 3-1實驗流程 29 3-2實驗藥品與儀器 31 3-2-1藥品 31 3-2-2實驗設備 34 3-3實驗方法 35 3-3-1氧化石墨烯的製備 35 3-3-2PSA之合成 35 3-4結構鑑定與分析 37 3-4-1FT-IR光譜儀 37 3-4-21H-NMR光譜儀 37 3-4-3凝膠滲透層析儀 37 3-5分散劑在氧化石墨烯孔隙溶液之分散性測試 39 3-5-1沉降實驗 39 3-5-2黏度量測 39 3-5-3界達電位量測 39 3-5-4粒徑分布量測 40 3-6添加PSA/GO的水泥漿性質分析 40 3-6-1水泥漿體之拌製 40 3-6-2 X-ray粉末繞射儀 41 3-6-3熱示差掃描分析儀 41 3-6-4掃描式電子顯微鏡 42 3-7添加PSA/GO的水泥砂漿性質分析 42 3-7-1水泥砂漿之拌製 42 3-7-2抗壓強度測試 45 3-7-3抗彎強度測試 45 3-7-4電阻率量測 46 第四章 結果與討論 47 4-1氧化石墨烯之結構鑑定 47 4-1-1氧化石墨烯IR光譜 47 4-1-2氧化石墨烯拉曼光譜 48 4-1-3氧化石墨烯粒徑分布 50 4-1-4氧化石墨烯界達電位 51 4-1-5氧化石墨烯微觀結構 53 4-2 分散劑之結構鑑定 54 4-2-1分散劑 IR光譜分析 54 4-2-2PSA 1H-NMR光譜分析 56 4-2-3PSA之分子量 58 4-3不同分散劑對GO沉降體積的影響 61 4-4不同分散劑對GO的粒徑分布影響 63 4-5不同分散劑對GO的界達電位影響 66 4-6不同分散劑對GO的黏度影響 67 4-7GO水泥漿微結構分析 68 4-8GO水泥漿XRD分析 72 4-9GO水泥漿DSC分析 75 4-10PSA/GO對砂漿抗壓強度的影響 78 4-11PSA/GO對砂漿抗彎強度的影響 83 4-12PSA/GO對砂漿電阻率的影響 88 第五章結論 91 參考文獻 93

    1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science, 666–669, 2004
    2. G. Kucinsk, G. Bajars, J. Kleperis, “Graphene in lithium ion battery cathode materials: a review”, J. Power Sources, 240, 66–79, 2013
    3. M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, “Graphene-Based Ultracapacitors”, Nano Lett., 8, 3498, 2008
    4. O. C. Compton, S. T. Nguyen, “Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials”, Small, 6, 711–723, 2010
    5. H. R. Thomas, C. Vallés, R. J. Young, I. A. Kinloch, N. R. Wilson, J. P. Rourke, “Identifying the fluorescence of graphene oxide”, Compos. Sci. Technol., 88, 158, 2013
    6. Z. Li, R. J. Young, I. A. Kinloch, “Interfacial stress transfer in graphene oxide nanocomposites”, ACS Appl. Mater. Interfaces, 5, 456, 2013
    7. H. Yang, H. Cui, W. Tang, Z. Li, N. Han, F. Xing, “A critical review on research progress of graphene/cement based composites”, Composites: Part A, 102, 273–296, 2017
    8. K. S. Novoselov, V.I.Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, “A roadmap for graphene”, Nature, 490, 2012
    9. G. Eda, M. Chhowalla, “Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics”, Adv. Mater., 22, 2392–2415, 2010
    10. B. C. Brodie, “On the atomic weight of graphite”, Philos. Trans. R. Soc. London, 149, 249, 1959
    11. L. Staudenmaier, “Verfahren zur Darstellung der Graphitsäure”, Ber. Deut. Chem. Ges., 31, 1481, 1898
    12. W. S. Hummers, R. E. Offeman, “Preparation of Graphitic Oxide”, J. Am. Chem. Soc., 80, 1339, 1958
    13. R. G. Horn, “Surface Forces and Their Action in Ceramic Materials”, J. Am. Cerum. Soc., 73, 1117–1135, 1990
    14. S. Hanehara, K. Yamada, “Interaction between cement and chemical admixture from the point of cement hydration, absorption behaviour of admixture, and paste rheology”, Cem Concr Res., 29, 1159–1165, 1999
    15. C. Jolicoeur, M. A. Simard, “Chemical admixture-cement interactions: Phenomenology and physico-chemical concepts”, Cem. Concr Composites, 20, 87–101, 1998
    16. S. Lv, Y. Ma, C. Q, T. Sun, J. Liu, Q. Zhou, “Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites”, Const. Build. Mater., 49, 121–127, 2013
    17. C. Lin, W. Wei, Y. Hu, “Catalytic behavior of graphene oxide for cement hydration process”, Journal of Physics and Chemistry of Solids, 89, 128–133, 2016
    18. S. Chuaha, Z. Pan, J. G. Sanjayan, C. M. Wang, W. H. Duan, “Nano reinforced cement and concrete composites and new perspective from graphene oxide”, Const. Build. Mater., 73, 113–124, 2014
    19. H. Du, H. J. Gao, S. D. Pang, “Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet”, Cement and Concrete Research, 83, 114–123, 2016
    20. Z. Lu, A. Hanif, C. Ning, H. Shao, R. Yin, Z. Li, “Steric stabilization of graphene oxide in alkaline cementitious solutions:Mechanical enhancement of cement composite”, Materials & Design, 127, 154–161, 2017
    21. L. Zhao, X. Guo, C. Ge, Q. Li, L. Guo, X. Shu, J. Liu, “Mechanical behavior and toughening mechanism of polycarboxylate superplasticizer modified graphene oxide reinforced cement composites”, Composites Part B, 113, 308–316, 2017
    22. E. Shamsaeia, F. B. Souza, X. Yao, E. Benhelal, A. Akbari, W. Duan, “Graphene-based nanosheets for stronger and more durable concrete: A review”, Const. Build. Mater., 183, 642–660, 2018
    23. M. L. Cao, H. X. Zhang, C. Zhang, “Effect of graphene on mechanical properties of cement mortars”, J. Central South Univ., 23, 919–925, 2016
    24. L. Zhao, X. Guo, C. Ge, Q. Li, L. Guo, X. Shu, J. Liu, “Mechanical behavior and toughening mechanism of polycarboxylate superplasticizer modified graphene oxide reinforced cement composites”, Composites Part B, 113, 308–316, 2017
    25. L. Zhao, X. Guo, C. Ge, Q. Li, L. Guo, X. Shu, J. Liu, “Investigation of the effectiveness of PC@ GO on the reinforcement for cement composites”, Const. Build. Mater., 113, 470–478, 2016
    26. S. Lv, Y. Ma, C. Qiu, T. Sun, J. Liu, Q. Zhou, “Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites”, Const. Build. Mater., 49, 121–127, 2013
    27. Q. Wang, J. Wang, C. X. Lu, B. W. Liu, K. Zhang, C. Z. Li, “Influence of graphene oxide additions on the microstructure and mechanical strength of cement”, New Carbon Mater., 30, 4, 349–356, 2015
    28. D. Kang, K. S. Seo, H. Lee, W. Chung, “Experimental study on mechanical strength of GO-cement composites”, Constr. Build. Mater., 131, 303–308, 2017
    29. A. Gholampour, M. V. Kiamahalleh, D. N. Tran, T. Ozbakkaloglu, D. Losic, “Revealing the dependence of the physiochemical and mechanical properties of cement composites on graphene oxide concentration”, RSC Adv., 7, 87, 55148–55156, 2017
    30. H. Qin, W. Wei, Y. H. Hu, “Synergistic effect of graphene-oxide-doping and microwave-curing on mechanical strength of cement”, J. Phys. Chem. Solids., 103, 67–72, 2017
    31. S. Sharma, N. Kothiyal, “Influence of graphene oxide as dispersed phase in cement mortar matrix in defining the crystal patterns of cement hydrates and its effect on mechanical, microstructural and crystallization properties”, RSC Adv., 5, 65, 52642–52657, 2015
    32. B. Han, Q. Zheng, S. Sun, S. Dong, L. Zhang, X. Yu, J. Ou, “Enhancing mechanisms of multi-layer graphenes to cementitious composites” ,Composites Part A, 2017
    33. M. E. Abrishami, V. Zahabi, “Reinforcing graphene oxide/cement composite with NH2 functionalizing group”, Bull. Mater. Sci., 39, 4, 1073–1078, 2016
    34. A. M. Dimiev, J. M. Tour, “Mechanism of graphene oxide formation”, ACS nano., 8, 3, 3060–3068, 2014
    35. H. Uchikawa, S. Hanehara, D. Sawaki, “The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture”, Cement and Concrete Research, Vol. 27, No. 1, pp. 37-50, 1997
    36. V. Ramakrislman, “The stability of alumina-zirconia suspensions”, Colloids and Surfaces A: Physicocheraical and Engineering Aspects, 1331, 135–142, 1998
    37. Z. Lu, D. Hou, H. Ma, T. Fan, Z. Li, “Effects of graphene oxide on the properties and microstructures of the magnesium potassium phosphate cement paste”, Constr. Build. Mater., 119, 107–112, 2016
    38. O. M. Jensen, P. F. Hansen, “Water-entrained cement-based materials II. Experimental observations”, Cement Concr Res., 32, 6, 973-978, 2002
    39. S. J. Chen, F. G. Collins, A. J. N. Macleod, Z. Pan, W. H. Duan, C. M. Wang, “Carbon nanotube-cement composites: a retrospect”, IES J. Part A: Civil. Struct. Eng., 4, 4, 254–265, 2011
    40. 林錦良,"兩性離子型水膠/爐石複合材料的合成和性質研究",國立台灣師範大學化學研究所碩士論文,2016
    41. 黃嘉興 "舊材料的新見解—氧化石墨烯之界面活性"工業材料雜誌 291
    42. A. L. Pisello, A. D’Alessandro, S. Sambuco, M. Rallini, F. Ubertini, F. Asdrubali, A. L. Materazzi, F. Cotana, “Multipurpose experimental characterization of smart nanocomposite cement-based materials for thermal-energy efficiency and strain-sensing capability”, Solar Energy Materials & Solar Cells, 161, 77–88, 2017
    43. T. S. Qureshi, D. K. Panesar, B. Sidhureddy, A. Chen, P. C. Wood, “Nano-cement composite with graphene oxide produced from epigenetic graphite deposit,”Composites Part B, 159 , 248–258, 2019
    44. W. Sha, E. A. O'Neilla, Z. Guo, “Differential scanning calorimetry study of ordinary Portland cement”, Cement and Concrete Research, 29, 1487–1489, 1999
    45. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers”, Physical Review Letters, 97, 187401, 2006
    46. A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects”, Solid State Communications, 143, 47–57, 2007
    47. L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, “Raman spectroscopy in graphene”, Physics Reports., 473, 51–87, 2009
    48. S. Weber, H. W. Reinhardt, “A New Generation of High Performance Concrete: Concrete with Autogenous Curing”, Adv Cem Based Materials, 6, 2, 59–68, 1997
    49. K. L. Scrivener, T. Füllmanna, E. Gallucci, G. Walenta, E. Bermejo, “Quantitative study of Portland cement hydration by X-ray iffraction/Rietveld analysis and independent methods”, Cement and Concrete Research, 34, 1541–1547, 2004
    50. M. Liu, J. Lei, L. Guo, X. Du, J. Li, “The application of thermal analysis, XRD and SEM to study the hydration behavior of tricalcium silicate in the presence of a polycarboxylate superplasticizer”, Thermochimica Acta., 613, 54–60, 2015
    51. M. Jin, L. Jiang, M. Lu, S. Bai, “Monitoring chloride ion penetration in concrete structure based on the conductivity of graphene/cement composite”, Construction and Building Materials, 136, 394–404, 2017
    52. F. Wenner, “Bulletin of the Bureau of Standards”, 12, 469–478, 1915
    53. C. Y. Su, A. Y. Lu, C. Y. Wu, Y. T. Li, K. K. Liu, W. Zhang, S. Y. Lin, Z. Y Juang, Y. L. Zhong, F. R. Chen, L. L. Li, “Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition”, Nano Lett., 11, 3612–3616, 2011
    54. X. Li, W. Cai, L. Colombo, R. S. Ruoff, “Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling”, Nano Lett., 9, No.12, 2009
    55. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons”, Nano Lett., 458, 2009
    56. N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, “One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite”, Adv. Funct. Mater., 18, 1518–1525, 2008
    57. C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. Heer, “Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics”, J. Phys. Chem. B., Vol. 108, No. 52, 19912–19916, 2004
    58. M. Saafi, L. Tang, J. Fung, M. Rahman, J. Liggat, “Enhanced properties of graphene/fly ash geopolymeric composite cement”, Cem. Concr. Res., 67, 292–299, 2015
    59. W. Li, X. Li, S. J. Chen, Y. M. Liu, W. H. Duan, S. P. Shah, “Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste”, Const. Build. Mater., 136, 506–514, 2017
    60. M. Wang, R. Wang, H. Yao, Z. Wang, S. Zheng, “Adsorption characteristics of graphene oxide nanosheets on cement”, RSC Adv., 6, 68, 63365–63372, 2016
    61. J. Davies, J. G. P. Binner, “The role of ammonium polyacrylate in dispersing concentrated alumina suspensions”, Journal of the European Ceramic Society, 20, 1539–1553, 2000
    62. S. Srinivasana, S. A. Barbhuiyaa, D. Charanb, S. P. Pandey, “Characterising cement–superplasticiser interaction using zetapotential measurements”, Const. Build. Mater., 24, 2517–2521, 2010

    無法下載圖示 本全文未授權公開
    QR CODE