簡易檢索 / 詳目顯示

研究生: 林美如
論文名稱: 多鐵電氧化物及硫化物材料之光譜性質研究
Optical properties of multiferroic oxides and sulfides
指導教授: 劉祥麟
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 156
中文關鍵詞: 多鐵電材料
論文種類: 學術論文
相關次數: 點閱:139下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究多鐵電體材料(Tb1-xNax)MnO3(x = 0.0、0.03及0.05)、DyMnO3及CdCr2S4之光譜性質。TbMnO3的室溫拉曼光譜與之前的論文[Phys. Rev. B 73, 064302 (2006)]結果完全吻合,以Na+離子部分取代Tb3+離子時,拉曼振動峰呈現微小的擾動,可能與氧缺陷產生局部晶格扭曲有緊密的關聯性,而當Dy3+離子完全取代Tb3+離子,拉曼振動峰顯現藍移的現象且半高寬變窄,印證了中心離子變小造成單位晶胞體積縮小的趨勢,另一類鐵電材料CdCr2S4的四室溫拉曼光譜與之前論文[Phys. Rev. B 21, 1316 (1980)]結果亦相吻合。
    其次,我們研究這些樣品的變溫光譜響應,隨著溫度的降低,(Tb1-xNax)MnO3(x = 0.0、0.03及0.05)及DyMnO3在380 cm-1的聲子吸收峰顯示紅移現象且伴隨權重強度的增加,可能與電荷重新分布有關;其次,CdCr2S4接近相變溫度84 K時,兩個325和381 cm-1的聲子吸收峰有微小的紅移現象,這是由於Cr-S-Cr與Cr-S-Cd-S-Cr超交換作用所引起的自旋-聲子耦合。

    We study the optical properties of single crystalline multiferroic materials, such as (Tb1-xNax)MnO3 (x = 0.0, 0.03, and 0.05), DyMnO3, and CdCr2S4. The room-temperature Raman spectra of TbMnO3 are similar with the previous results of Phys. Rev. B 73, 064302 (2006). The position and intensity of Raman-active phonons are perturbed to some extent by Na doping. It is likely that monovalent Na+ ions were used to create oxygen vacancies and to induce the local lattice distortions. When doped with Dy on Tb, the phonon frequencies are hardening and their linewidths are narrowing, which is due to the chemical substitution of the smaller Dy ions into the bigger Tb ionic sites. The room-temperature Raman spectra of CdCr2S4 are also similar with the previous results of Phys. Rev. B 21, 1316 (1980).

    With decreasing temperature, overall infrared-active phonon spectra of (Tb1-xNax)MnO3 and DyMnO3 remain unchanged. However, the phonon mode at about 380 cm-1 show a softening and an increased intensity at low temperature, which is possibly due to the redistribution of effective charges in the unit cell. In the ferromagnetic phase below 84 K, the phonon peaks of CdCr2S4 near 325 and 381 cm-1 show a shift to lower frequencies, indicating the spin-phonon coupling via the superexchange interactions of Cr-S-Cr and Cr-S-Cd-S-Cr.

    中文摘要 ………………………………………………………… i 英文摘要 ………………………………………………………… ii 誌謝 ……………………………………………………………… iii 目錄 ……………………………………………………………… iv 表目錄 …………………………………………………………… vi 圖目錄 …………………………………………………………… ix 第一章 緒論 …………………………………………………… 1 第二章 研究背景 ……………………………………………… 5 2-1 磁性與電性理論 ……………………………………… 5 2-2 磁電相應及磁容效應 ………………………………… 7 第三章 實驗儀器設備及其基本原理 …………………………… 27 3-1 傅立葉轉換紅外光譜儀 ……………………………… 27 3-2 光柵式分光儀 ………………………………………… 30 3-3反射光譜實驗量測原理 ……………………………… 32 3-3-1電磁波在介質中的傳遞………………………… 32 3-3-2克拉馬-克羅尼關係式…………………………… 34 3-3-3羅侖茲模型擬合………………………………… 35 3-4顯微雷射拉曼散射光譜儀 …………………………… 36 3-5拉曼散射原理 ………………………………………… 36 第四章 研究步驟 ……………………………………………… 41 4-1樣品製程 ……………………………………………… 41 4-2樣品結構 ……………………………………………… 42 4-3磁性與電性量測………………………………………… 44 4-4群論計算………………………………………………… 45 第五章 實驗結果與討論 ……………………………………… 65 5-1拉曼散射光譜 ………………………………………… 65 5-2全頻光譜 ………………………………………………… 68 第六章 結論與未來展望 ……………………………………… 151 參考文獻 ………………………………………………………… 153

    [1] P. J. Curie, Phys. (Paris), Colloq. 3, 393 (1894).
    [2] V. J. Folen, G. T. Radp, and E. W. Stalder, Phys. Rev. Lett. 6, 607 (1961).
    [3] T. S. Chan, R. S. Liu, Y. H. Lien, C. Y. Huang, S. F. Hu, J. M. Chen, J. –F. Lee, M. Karppinen, and H. Yamauchi, Chin. J. Of Phys. 45, 256 (2007).
    [4] J. Hemberger, P. Lunkenheimer, R. Fichtl, H. –A. Kurg von Nidda, V.Tsurkan, and A. Loidl, Nature 434, 364 (2005).
    [5] P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan, and A. Loidl, Phys. Rev. B 72, 060103 (2005).
    [6] 吳宗展,國立中山大學物理研究所碩士論文,91年六月。
    [7] 郭明憲,國立台灣師範大學物理研究所碩士論文,92年七月。
    [8] C. Kittel, Introductuion to Solid State Physics, Wiley. 1996 seven edition.
    [9] http://www.phy.fju.edu.tw/lab/PH107/index _002.htm
    [10] 介電質物理學,http://info.datany.net/D/D1167.HTM
    [11] W. Eerenstein, N. D. Nathur, and J. F. Scott. Nature 442, 759 (2006).
    [12] T. Kimura, T. Goto, U. Shintani, K. Ishizaka, T. Arima, and T. Tokura, Nature (Lindon) 426, 55 (2003).
    [13] T. Kimura and G. Lawes, Phys. Rev. B 71, 224425 (2005).
    [14] N. Aliouane, D. N. Argyrious, J. Strempfer, I. Zegkinoglous, S. Landsgeswll, and M. V. Zimmermann, Phys. Rev. B 73, 0202102 (2006).
    [15] J. Blasco, C. Ritter, J. García, J. M. Tereasa, J. Perez-Cacho, and M. R. Ibarra, Phys. Rev. B 62, 5609 (2000).
    [16] T. Goto, Y. Yamasaki, H. Watanabe, T. Kimura, and Y. Tokura, Phys. Rev. B 72, 220403 (2005).
    [17] N. E. Brese and M. O’Keeffe, Acta Crystallogr. B 47, 192 (1991).
    [18] C. C. Yang, M. K. Chung, W. –H. Li, T. S. Chan, R. S. Liu, Y. H. Lien, C. Y. Huang, Y. Y. Chan, Y. D. Yao, and J. W. Lynn, Phys. Rev. B 74, 094409 (2006).
    [19] G. A. Samara, J. Phys. Condensed Matter 12, R367 (2003).
    [20] Lixin He, J. B. Neaton, Morrel Vanderbilt, and Morrel H. Cohen, Phys. Rev. B 67, 012103 (2003).
    [21] Douglas A. Skoog and James J. Leary著,林敬二、林宗義審譯,儀器分析,美亞書版股份有限公司,1971第四版上冊。
    [22] 毛光興著,儀器分析,幼獅文化事業公司,中華民國六十九年七月第二版。
    [23] 李冠卿著,近代光學,聯經出版社,中華民國七十七年九月初版。
    [24] 鄧勃、 宁永成、 劉密新著,儀器分析,清華大學出版社出版,中華民國八十年五月第一版。
    [25] http://chem5.nchc.org.tw/icsd0702/index.php
    [26] R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).
    [27] T. Kimura, S. Ishihara, H. Shintani, T. Arima, K. T. Takahashi, K. ishizaka, and Y. Tokura, Phys. Rev. B 68, 060403 (2003).
    [28] G. Szabo, R. A. Paris, and C. R. Acad. Sci. Paris, Ser. C 268, 513 (1969).
    [29] M. Talanori, A. Katsuyuki, K. Naoki, S. Toetsu, and F. Tsuguo, Materials Letters 42, 387-389 (2000).
    [30] P. K. Baltzer, P. J. Wojtowicz, M. Robbins, and E. Lopatin, Phys. Rev. B 151, 367 (1966).
    [31] 國立臺灣大學化學系劉如熹教授實驗室。
    [32] 中央研究院超電導實驗室。
    [33] T. S. Chan, R. S. Liu, Y. H. Lien, C. C. Yang, and J. G. Lin, IEEE Trans. On Mag. 41, 2751 (2005).
    [34] 國立中山大學物理系楊弘敦教授實驗室。
    [35] W. J. Miniscalco, B. C. McCollum, N. G. Stoffel, and G. Maragaritondo, Phys. Rev. B 25, 2947 (1982).
    [36] N. Shanthi, P. Mahadevan, and D. D. Sarma, J. Solid. State Chem. 155, 198 (2000).
    [37] Willian G. Fately, Francis R. Dollish, Neil T. McDevitt, Freeman F. Benteley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations-The Correlation Method, ( New York : Wiley-Interscience, a dividition of John Wiley & Sons, INC., 1972 ).
    [38] T. H. Lee, J. Appl. Phys. 42, 1441 (1971).
    [39] M. N. Iliev, M. V. Abrashev, J. Laverdière, S. Jandl, M. M. Gospodinov, Y. –Q. Wang, and Y. –Y. Sun, Phys. Rev. B 73, 064302 (2006).
    [40] M. Martín-Carrón, A. D. Andrés, M. J. Martínez-Lope, M. T. Casais, and J. A. Alonso, Phys. Rev. B 66, 174303 (2002).
    [41] V. B. Podobedov, A. Weber, D. B. Romero, J. P. Rice, and H. D. Drew, Phys. Rev. B 58, 43 (1998).
    [42] H. D. Lutz, J. Himmrich, and H. Haeuseler, Z. Naturforsch. A 45, 893 (1990).
    [43] N. Koshizuka, S. Ushioda, and T. Tsushima, Phys. Rev. B 21, 1316 (1980).
    [44] arXiv:cond-mat/070702362v1 15 Feb 2007.
    [45] M. N. Iliev, M. V. Abrashev, H. –G. Popov,Y. Y. Sun, C. Thomsen, R. L.Meng, and C. W. Chu, Phys. Rev. B 57, 2872 (1998).
    [46] I. S. Smirnova, Phyica B 262, 247 (1999).
    [47] F. Wooten, Optical properties of Solids, Academic, New York, (1972).
    [48] A. P. Litvinchuk, m. N. Iliev, V. N. Popov, and M. M. Gospodinov, J. Phys.: Condens. Matter 16, 809 (2004).
    [48] A. P. Litvinchuk, m. N. Iliev, V. N. Popov, and M. M. Gospodinov, J. Phys.: Condens. Matter 16, 809 (2004).
    [49] 何金龍,國立臺灣師範大學物理研究所博士論文,94年10月。
    [50] J. Menendez and M. Cardona, Phys. Rev B 29, 2051 (1984).
    [51] J. S. Lee and T. W. Noh, Phys. Rev. B 69, 214428 (2004).
    [52] C. C. Homes, T. Vogt, and S. M. Shapiro, Phys. Rev. B 67, 092106 (2003).
    [53] C. C. Wang, Y. M. Cui, and L. W. Zhang, Appl. Phys. Lett. 90, 012901 (2007).
    [54] K. Wakamura and T. Arai, J. Appl. Phys. 63, 5824 (1988).
    [55] C. J. Fennie and K. M. Rabe, Phys. Rev. B 72, 214123 (2005).

    QR CODE