研究生: |
陳維家 Chen, Wei-Chia |
---|---|
論文名稱: |
拓撲異構酶I抑制劑或鈣/鈣調蛋白依賴性蛋白激酶抑制劑的小分子化合物的設計合成和特性分析 Design, Synthesis, and Characterization of Small Molecules as Topoisomerase I Inhibitor or Calcium/calmodulin-dependent Protein Kinase Inhibitor |
指導教授: |
林文偉
Lin, Wen-Wei 李文山 Li, Wen-Shan |
口試委員: | 林文偉 李文山 林宜玲 邱勝賢 杜玲嫻 |
口試日期: | 2022/01/19 |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 158 |
中文關鍵詞: | 拓撲異構酶 I 、癌症 、鈣/鈣調蛋白依賴性激酶 II 、登革熱 、細胞存活試驗 |
英文關鍵詞: | Topoisomerase I, Cancer, Calcium/calmodulin-dependent kinase II, Dengue fever, MTT assay |
DOI URL: | http://doi.org/10.6345/NTNU202200127 |
論文種類: | 學術論文 |
相關次數: | 點閱:124 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用有機合成的方式製備小分子藥物並通過構效關係(SAR)來優化結構是新藥開發的重要研究方式。本篇論文從以下兩個方向出發(1)使用拓撲異構酶 I (TOP1) 作為針對多種癌症的標靶蛋白(2)使用鈣/鈣調蛋白依賴性激酶 II (CaMKII) 作為針對登革熱病毒的標靶蛋白,合成了兩個系列的新型藥物。在第一部分,我們合成了一系列oxadiazolopyrazine的衍生物,發現其作用機制與市面上知名的TOP1抑制劑喜樹鹼相似。在這些物質中,7-fluoro-6-methoxy-9H-indeno[1,2-b][1,2,5]oxadiazolo[3,4-e]pyrazin-9-one (10)的抗癌效果最好,其針對 MDA-MB-231、BT549和MCF7細胞系的IC50分別是0.23 μM、0.19 μM 和0.25 μM。在第二部分中,我們關注在登革熱方面,它是一種屬於黃病毒科,目前最重要的蚊子傳播類疾病,每年會導致數萬人死亡。從我們合成的這些結構中,N-(4-cycloheptyl-4-oxobutyl)-4-methoxy-N-phenylbenzenesulfonamide (65) 顯示為具有最佳的抗病毒效果和最佳的CaMKII抑制效果,其EC50為1.52μM,並能顯著增加小鼠挑戰模型中的動物的存活時間。
Using organic synthesis to make small molecule drugs and optimizing its structure via structure activity relationship (SAR) is an important research method in new drug development. Here, we synthesized two series of novel drugs by using topoisomerase I (TOP1) as a target protein against multiple cancers (part I) and calcium/calmodulin-dependent kinase II (CaMKII) as a target protein against dengue virus. (part II) In part I, we have synthesized a series of oxadiazolopyrazine analogues, and found that the mechanism of it is similar to that of camptothecin, a well-known TOP1 inhibitor in the market. Among these substances, 7-fluoro-6-methoxy-9H-indeno[1,2-b][1,2,5]oxadiazolo[3,4-e]pyrazin-9-one (10) shows the best anticancer effect, displayed IC50 = 0.23 μM, 0.19 μM, and 0.25 μM against MDA-MB-231, BT549, and MCF7 cell lines, respectively. In part II, we focus on dengue fever, which belongs to the Flaviviridae family, is an important mosquito-transmitted disease that causes tens of thousands of deaths every year. From these structures we synthesized, N-(4-cycloheptyl-4-oxobutyl)-4-methoxy-N-phenylbenzenesulfonamide (65) showed as the best CaMKII inhibitor with potent antiviral effect, displayed EC50 values of 1.52 M against DENV infections of human neuronal BE(2)C cells and increased animal survival time in mouse-challenge models significantly.
1. Vos, S. M.; Tretter, E. M.; Schmidt, B. H.; Berger, J. M. All tangled up: how cells direct, manage and exploit topoisomerase function. Nat. Rev. Mol. Cell Biol. 2011,12, 827-841.
2. Hansen, K. B.; Hsiao, Y.; Xu, F.; Rivera, N.; Clausen, A.; Kubryk, M.; Krska S.; Rosner T.; Simmons B.; Simmons B.; Balsells J.; Ikemoto N.; Sun Y.; Spindler F.; Malan, C.; Grabowski, E. J. J.; Armstrong J. D. Highly Efficient Asymmetric Synthesis of Sitagliptin. J. Am. Chem. Soc. 2009, 131, 8798-8804.
3. McGuire, S. World cancer report 2014. Geneva, Switzerland: World Health Organization, international agency for research on cancer, WHO Press, 2015. Adv. Nutr. 2016, 7, 418-419.
4. Wang, J. C. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol. 2002, 3, 430-440.
5. Goto, T.; Wang, J. C. Yeast DNA topoisomerase II. An ATP-dependent type II topoisomerase that catalyzes the catenation, decatenation, unknotting, and relaxation of double-stranded DNA rings. J. Biol. Chem., 1982, 257, 5866-5872.
6. Govindachari, T.; Viswanathan N. Alkaloids of Mappia foetida. Phytochem Lett., 1972, 11, 3529-3531.
7. Efferth, T.; Fu, Y. J.; Zu, Y. G.; Schwarz, G.; Konkimalla, V. S. B.; Wink, M. Molecular target-guided tumor therapy with natural products derived from traditional Chinese medicine. Curr. Med. Chem., 2007, 14, 2024-2032.
8. Thomas, C. J.; Rahier, N. J.; Hecht, S. M. Camptothecin: current perspectives. Bioorg. Med. Chem. 2004. 12, 1585-1604.
9. Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer, 2006. 6, 789.
10. Staker, B. L.; Hjerrild, K.; Feese, M. D.; Behnke, C. A.; Burgin, A. B.; Stewart, L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc. Natl. Acad. Sci. U.S.A., 2002 99, 15387-15392.
11. Armstrong, D. K. Topotecan dosing guidelines in ovarian cancer: reduction and management of hematologic toxicity. Oncologist, 2004. 9, 33-42.
12. Pommier, Y.; Pommier, Y. (2009). DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem. Rev., 2009. 109, 2894-2902.
13. Deng, J.; Taheri, L.; Grande, F.; Aiello, F.; Garofalo, A.; Neamati, N. ChemMedChem. 2008, 3, 1677-1686.
14. Beebe, X.; Nilius, A. M.; Merta, P. J.; Soni, N. B.; Bui, M. H.; Wagner, R.; Beutel, B. A. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc. Natl. Acad. Sci. U.S.A. 2003, 13, 3133-3136
15. Childress E. S.; Salamoun J. M.; Hargett S. R.; Alexopoulos S. J.; Chen S. Y.; Shah D. P.; Santiago-Rivera J.; Garcia C.r J.; Dai Y.; Tucker S. P.; Hoehn K. L.; Santos W. L. [1, 2, 5] Oxadiazolo [3, 4-b] pyrazine-5, 6-diamine derivatives as mitochondrial uncouplers for the potential treatment of nonalcoholic steatohepatitis. J. Med. Chem., 2020, 63, 2511-2526.
16. Salamoun, J. M.; Garcia, C. J.; Hargett, S. R.; Murray, J. H.; Chen, S. Y.; Beretta, M.; Alexopoulos S. J.; Shah D. P.; Olzomer E. M.; Tucker S. P.; Hoehn K. L.; Santos W. L. 6-Amino [1, 2, 5] oxadiazolo [3, 4-b] pyrazin-5-ol derivatives as efficacious mitochondrial uncouplers in STAM mouse model of nonalcoholic steatohepatitis. J. Med. Chem. 2020, 63, 6203.
17. World Health Organization, Special Programme for Research, Training in Tropical Diseases, World Health Organization. Department of Control of Neglected Tropical Diseases, World Health Organization. Epidemic, & Pandemic Alert. Dengue: guidelines for diagnosis, treatment, prevention and control. World Health Organization. 2009.
18. Guzman, M. G.; Halstead, S. B.; Artsob, H.; Buchy, P.; Farrar, J.; Gubler, D. J.; Hunsperger, E.; Kroeger, A.; Margolis, H. S.; Martínez, E., Dengue: a continuing global threat. Nat. Rev. Microbiol. 2010, 8, S7-S16.
19. Chen, L. H.; Wilson, M. E., Dengue and chikungunya infections in travelers. Curr. Opin. Infect. Dis. 2010, 23, 438-444.
20. Guzmán, M. G.; Kouri, G. P.; Bravo, J.; Soler, M.; Vazquez, S.; Morier, L., Dengue hemorrhagic fever in Cuba, 1981: a retrospective seroepidemiologic study. Am. J. Trop. Med. Hyg. 1990, 42, 179-184.
21. Alvarez, M.; Rodriguez-Roche, R.; Bernardo, L.; Vazquez, S.; Morier, L.; Gonzalez, D.; Castro, O.; Kouri, G.; Halstead, S. B.; Guzman, M. G., Dengue hemorrhagic fever caused by sequential dengue 1–3 virus infections over a long time interval: Havana epidemic, 2001–2002. Am. J. Trop. Med. Hyg. 2006, 75, 1113-1117.
22. Rodenhuis-Zybert, I. A.; Wilschut, J.; Smit, J. M. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol. Life Sci. 2010, 67, 2773-2786.
23. Musso, D.; Gubler, D. J. Zika virus. Clin. Microbiol. Rev. 2016, 29, 487-524.
24. Simanjuntak, Y.; Liang, J. J.; Lee, Y. L.; Lin, Y. L. Japanese encephalitis virus exploits dopamine D2 receptor-phospholipase C to target dopaminergic human neuronal cells. Front. Microbiol. 2017, 8, 651.
25. Coultrap, S. J.; Bayer, K. U. CaMKII regulation in information processing and storage. Trends Neurosci. 2012, 35, 607-618.
26. Ebenebe, O. V.; Heather, A.; Erickson, J. R. CaMKII in vascular signalling: “Friend or Foe”? Heart Lung Circ. 2018, 27, 560-567.
27. Liu, X.; Zhan, Z.; Xu, L.; Ma, F.; Li, D.; Guo, Z.; Li, N.; Cao, X. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIalpha. J. Immunol. 2010, 185, 7244-7251.
28. Pellicena, P.; Schulman, H. CaMKII inhibitors: from research tools to therapeutic agents. Front. Pharmacol. 2014, 5, 21.
29. Yang, X.; Wu, N.; Song, L.; Liu, Z. Intrastriatal injections of KN-93 ameliorates levodopa-induced dyskinesia in a rat model of Parkinson's disease. Neuropsychiatr. Dis. Treat. 2013, 9, 1213-1220.
30. Sumi, M.; Kiuchi, K.; Ishikawa, T.; Ishii, A.; Hagiwara, M.; Nagatzu, T.; Hidaka, H., The newly sunthesized selective Ca2+/calmodulin dependent kinase II inhibitor KN-93 reduces dopamine contents in PC12h cells. Biochem. Biophys. Res. Commun. 1991, 181, 968-975.
31. Lauro, G.; Manfra, M.; Pedatella, S.; Fischer, K.; Cantone, V.; Terracciano, S.; Bertamino A.; Ostacolo C.; Gomez-Monterrey I.; Nisco M. D.; Riccio R.; Novellino E.; Werz O.; Campiglia P.; Bifulco G. Identification of novel microsomal prostaglandin E2 synthase-1 (mPGES-1) lead inhibitors from Fragment Virtual Screening. Eur. J. Med. Chem. 2017, 125, 278-287.
32. Catrow, J. L.; Zhang, Y.; Zhang, M.; Ji, H. Discovery of selective small-molecule inhibitors for the β-Catenin/T-Cell factor protein–protein interaction through the optimization of the acyl hydrazone moiety. J. Med. Chem., 2015, 58, 4678-4692.
33. Hansen, K. B.; Hsiao, Y.; Xu, F.; Rivera, N.; Clausen, A.; Kubryk, M.; Krska S.; Rosner T.; Simmons B.; Balsells J.; Ikemoto N.; Sun Y.; Spindler F.; Malan C.; Grabowski E. J. J.; Armstrong J. D. Highly efficient asymmetric synthesis of sitagliptin. J. Am. Chem. Soc., 2009,131, 8798-8804.
34. Kangani, C. O.; and Day, B. W. Mild, Efficient Friedel−Crafts Acylations from Carboxylic Acids Using Cyanuric Chloride and AlCl3, Org. Lett. 2008, 10, 2645-2648.
35. Musso, D. L.; Cochran, F. R.; Kelley, J. L.; McLean, E. W.; Selph, J. L.; Rigdon, G. C.; Orr G. F.; Davis R. G.; Cooper B. R.; Styles V. L.; Thompson J. B.; Hall W. R. Indanylidenes. 1. Design and synthesis of (E)-2-(4, 6-difluoro-1-indanylidene) acetamide, a potent, centrally acting muscle relaxant with antiinflammatory and analgesic activity. J. Med. Chem., 2003, 46, 399-408.
36. Zhou Y.; Fu Y.; Yin W.; Li J.; Wang W.; Bai F.; Xu S.; Gong Q.; Peng T.; Hong Y.; Zang D.; Zhang D.; Liu Q.; Xu Y.; Xu H. E.; Zhang H.; Jiang H.; Liu H. Kinetics-Driven Drug Design Strategy for Next-Generation Acetylcholinesterase Inhibitors to Clinical Candidate. J. Med. Chem. 2021, 64, 1844-1855.
37. Zhang G.; Fei H.; Zhang X.; Hu W.; He F.; Tao W. European patent Office, 2021, EP19864112, 0344
38. Ooms, F.; Frédérick, R.; Durant, F.; Petzer, J. P.; Castagnoli Jr, N.; Van der Schyf, C. J.; Wouters, J. Rational approaches towards reversible inhibition of type B monoamine oxidase. Design and evaluation of a novel 5H-Indeno [1, 2-c] pyridazin-5-one derivative. Bioorg. Med. Chem., 2003, 13, 69-73.
39. Boothe, J. R.; Shen, Y.; Wolfe, J. P., Synthesis of Substituted γ-and δ-Lactams via Pd-Catalyzed Alkene Carboamination Reactions. J. Org. Chem. 2017, 82, 2777-2786.
40. Feng, Y.; Yu, Z.-X., Formal Synthesis of (±)-Galanthamine and (±)-Lycoramine Using Rh (I)-Catalyzed [(3+ 2)+ 1] Cycloaddition of 1-Ene–Vinylcyclopropane and CO. J. Org. Chem. 2015, 80, 1952-1956.
41. Kikue, N.; Takahashi, T.; Nishino, H., Mn (III)-Based Oxidative Cyclization of N-Aryl-3-oxobutanamides. Facile Synthesis and Transformation of Substituted Oxindoles. Heterocycl. Comm. 2015, 90, 540-562.
42. Chen, J.-Q.; Wei, Y.-L.; Xu, G.-Q.; Liang, Y.-M.; Xu, P.-F., Intramolecular 1, 5-H transfer reaction of aryl iodides through visible-light photoredox catalysis: a concise method for the synthesis of natural product scaffolds. Commun. Chem. 2016, 52, 6455-6458.
43. Miyamoto, H.; Hirano, T.; Okawa, Y.; Nakazaki, A.; Kobayashi, S., Stereoselective synthesis of spirocyclic oxindoles based on a one-pot Ullmann coupling/Claisen rearrangement and its application to the synthesis of a hexahydropyrrolo [2, 3-b] indole alkaloid. Tetrahedron. 2013, 69, 9481-9493.
44. Fournier, D.; Poirier, D., Chemical synthesis and evaluation of 17α-alkylated derivatives of estradiol as inhibitors of steroid sulfatase. Eur. J. Med. Chem. 2011, 46, 4227-4237.
45. Das, S. K.; Ghosh, A.; Paul Chowdhuri, S.; Halder, N.; Rehman, I.; Sengupta, S.; Sahoo K. C.; Rath H.; Das B. B. Neutral porphyrin derivative exerts anticancer activity by targeting cellular topoisomerase I (Top1) and promotes apoptotic cell death without stabilizing Top1-DNA cleavage complexes. J. Med. Chem., 2018, 61, 804-817.
46. Mouly, L.; Mamouni, K.; Gence, R.; Cristini, A.; Cherier, J.; Castinel, A.; Cherier J.; Castinel A.; Legrand M.; Favre G.; Sordet O.; Monferran S. PARP-1-dependent RND1 transcription induced by topoisomerase I cleavage complexes confers cellular resistance to camptothecin. Cell Death Differ., 2018, 9, 1-16.
47. Kadioglu, O.; Chan, A.; Cong Ling Qiu, A.; Wong, K. W. V.; Colligs, V.; Wecklein, S.; Wecklein S.; Rached H. F. H.; Efferth T.; Hsiao W. L. W. Artemisinin derivatives target topoisomerase 1 and cause DNA damage in silico and in vitro. Front. Pharmacol., 2017, 8, 711.
48. Sathish, M.; Kavitha, B.; Nayak, V. L.; Tangella, Y.; Ajitha, A.; Nekkanti, S.; Alarifi A.; Shankaraia N.; Nagesh N.; Kamal A. Synthesis of podophyllotoxin linked β-carboline congeners as potential anticancer agents and DNA topoisomerase II inhibitors. Eur. J. Med. Chem., 2018, 144, 557-571.
49. Chen, S. T.; Lin, Y. L.; Huang, M. T.; Wu, M. F.; Cheng, S. C.; Lei, H. Y.; Lee, C. K.; Chiou, T. W.; Wong, C. H.; Hsieh, S. L. CLEC5A is critical for dengue-virus-induced lethal disease. Nature 2008, 453, 672-676.
50. Durbin, J. E.; Hackenmiller, R.; Simon, M. C.; Levy, D. E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 1996, 84, 443-450.
51. Catrow, J. L.; Zhang, Y.; Zhang, M.; Ji, H. Discovery of selective small-molecule inhibitors for the β-Catenin/T-Cell factor protein–protein interaction through the optimization of the acyl hydrazone moiety. J. Med. Chem., 2015, 58, 4678-4692.