研究生: |
賴薇 Lai, Wei |
---|---|
論文名稱: |
以類別感知之多任務學習框架增進序列推薦效果 A Category-aware Multi-task Learning Framework for Improving Sequential Recommendation |
指導教授: |
柯佳伶
Koh, Jia-Ling |
口試委員: |
陳良弼
Chen, Liang-Bi 吳宜鴻 Wu, Yi-Hung 范耀中 Fan, Yao-Chung 柯佳伶 Koh, Jia-Ling |
口試日期: | 2021/08/17 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 推薦系統 、序列預測 、多任務學習框架 |
英文關鍵詞: | Recommendation System, Sequential Prediction, Multi-task Leaning Framework |
DOI URL: | http://doi.org/10.6345/NTNU202101166 |
論文種類: | 學術論文 |
相關次數: | 點閱:159 下載:20 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
序列推薦系統的目的是根據使用者以往與項目互動的序列資訊,預測使用者可能感興趣的下個互動項目主動進行推薦。本論文提出可套用於 GRU/bi- GRU/Caser 類神經網路模型的類別感知之多任務學習框架,利用項目的類別特徵做為項目的上層資訊,輔助模型預測使用者未互動過的下個項目預測任務。此框架以同時學習預測下個互動類別及下個互動項目為目標,在項目模組中將項目互 動序列經過類神經網路學習到項目層級行為表示法,再融合類別模組所學習到的類別層級行為表示法預測使用者下個互動項目。本論文所提出的方法,分別在 Foursquare 及 MovieLens 兩種不同序列強度的資料集上進行實驗,預測命中率的評估結果顯示:本論文提出的類別感知多任務學習框架在預測使用者下個未互動過的項目,相較只以單任務類神經網路模型的效能,在 Foursquare 資料集 Hit@10 最高可提升10.73%;MovieLens 資料集 Hit@10最高可提升7.29%。
The goal of sequential recommendation system is to learn patterns by constructing a model from user-item historical interaction records to predict the next item that user will be interested. In this thesis, a multi-task learning framework was proposed, is applicable on GRU/bi-GRU/Caser neural network model to learn category/item prediction tasks simultaneously. The main idea of the framework is to apply the category feature of item sequence, i.e., the high-level concept of item, for improving the prediction of next item that user has not interacted with. The item-level behavior representation learned in the item module of the framework is fused with the category- level behavior representation learned in the category module to predict the next item. The experiments performed on two datasets, which contain data sequences with different levels of sequential intensity, demonstrated that the proposed category-aware multi-task learning framework could get better performance than the single-task learning neural network model. Our approach achieves 10.73% improvement than the baseline model on the Foursquare dataset and 7.29% improvement on the MovieLens dataset as well.
[1] Yap GE, Li XL, and Philip SY. 2012. Effective next-items recommendation via personalized sequential pattern mining. In International conference on database systems for advanced applications, Springer, pp. 48–64.
[2] Rendle S, Freudenthaler C, and Schmidt-Thieme L. 2010. Factorizing personalized markov chains for next-basket recommendation. In Proceedings of the 19th international conference on World wide Web, ACM, pp. 811–820.
[3] Garcin FF, Dimitrakakis C, and Faltings B. 2013. Personalized news recommendation with context trees. In 7Th ACM recommender systems conference.
[4] Balázs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos Tikk. 2016. Parallel recurrent neural network architectures for feature-rich session-based recommendations. In RecSys, pp. 241–248.
[5] Qiang Liu, Shu Wu, and Liang Wang. 2017. Multi-behavioral sequential prediction with recurrent log-bilinear model. In TKDE 29, 6, pp. 1254–1267.
[6] Trinh Xuan Tuan and Tu Minh Phuong. 2017. 3D convolutional networks for session-based recommendation with content features. In RecSys, pp. 138–146.
[7] Zhi Li, Hongke Zhao, Qi Liu, Zhenya Huang, Tao Mei, and Enhong Chen. 2018. Learning from history and present: next-item recommendation via discriminatively exploiting user behaviors. In KDD, pp.1734–1743.
[8] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recommendation. In ICDM. IEEE, pp. 197–206.
[9] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation via convolutional sequence embedding. In WSDM, pp. 565–573.
[10] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and Xiangnan He. 2019. A simple convolutional generative network for next item recommendation. In WSDM, pp. 582–590.
[11] Shuai Zhang, Yi Tay, Lina Yao, Aixin Sun, and Jake An. 2019. Next item recommendation with self-attentive metric learning. In AAAI, Vol. 9.
[12] Fajie Yuan, Xiangnan He, Haochuan Jiang, Guibing Guo, Jian Xiong, Zhezhao Xu, and Yilin Xiong. 2020. Future Data Helps Training: Modeling Future Contexts for Session-based Recommendation. In WWW, pp. 303–313.
[13] Wang, D., Xu, D., Yu, D., and Xu, G. 2021. Time-aware sequence model for next-item recommendation. Appl Intell 51, pp. 906-920.
[14] Balazs Hidasi, Alexandros Karatzoglou, and et al. Session-based recommendations with recurrent neural networks. 2016. In Proceedings of the 4th International Conference on Learning Representations, pp. 1–10.
[15] Wang-Cheng Kang, Mengting Wan, and Julian McAuley. 2018. Recommendation through mixtures of heterogeneous item relationships. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 1143–1152.
[16] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factorizing personalized markov chains for next-basket recommendation. In WWW, pp. 811–820.
[17] Jarana Manotumruksa, Craig Macdonald, and Iadh Ounis. 2017. A Deep Recurrent Collaborative Filtering Framework for Venue Recommendation. In CIKM, pp.1429–1438.
[18] Kyunghyun Cho, Bart van Merrienboer, and Dzmitry Bahdanau. 2014. On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pp. 103–111.
[19] Caruana, R. 1993. Multitask learning: A knowledge-based source of inductive bias. In Proceedings of the Tenth International Conference on Machine Learning. In Proceedings of the Tenth International Conference on Machine Learning.
[20] L. Zhang, Z. Sun, J. Zhang, Y. Lei, C. Li, Z. Wu, H. Kloeden, and F. Klanner. 2020. An interactive multi-task learning framework for next poi recommendation with uncertain check-ins. In CAL 301 (985) 13954.
[21] D. Yang, D. Zhang, V. W. Zheng and Z. Yu. 2015. Modeling User Activity Preference by Leveraging User Spatial Temporal Characteristics in LBSNs. In IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45, no. 1, pp. 129-142.
[22] F. Maxwell Harper, and Joseph A. Konstan. 2016. The MovieLens Datasets: History and Context. In ACM, vol 5, no.19, pp. 1-19.