研究生: |
邱宣策 Chiou, Shiuan-Tse |
---|---|
論文名稱: |
十四位元三億取樣頻率之電流汲取式數位類比轉換器 A 14-bit 300 MHz Current-Steering Digital-to-Analog Converter |
指導教授: |
郭建宏
Kuo, Chien-Hung |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 電流式數位類比轉換器 、分段式架構 |
英文關鍵詞: | Current-steering DAC, Segmented Architecture |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DEE.006.2019.E08 |
論文種類: | 學術論文 |
相關次數: | 點閱:164 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於積體電路的製程發展迅速,促使著行動通訊發展越發茁壯,在第四代行動通訊已經盛行的現在,促成行動通訊裝置已經成為生活必需品。毫微微蜂巢式基地台(femtocell)的出現,增加了通訊信號的覆蓋率以維持良好的傳輸品質。為了構築一台能夠準確傳遞封包的毫微微蜂巢式基地台,一個高解析且高頻寬的數位類比轉換器的設計是很重要的。
本篇論文使用電流汲取式數位類比轉換器來達成所需的十四位元解析度與三億赫茲取樣頻率,而此十四位元電流式數位類比轉換器採用分段式(Segmented)架構,此架構以兩塊六位元的溫度計碼(Thermometer-based)轉換器與二位元二進制碼(binary-weighted) 轉換器所組成。此電路採用台積電TSMC 0.18 μm 1P6M mixed-signal CMOS 製成完成,類比與數位的供應電源分別採用 1.8 V 與 1 V。電路量測結果,最大 SFDR 能夠達到 44.72 dB,而整體消耗功率為 23.52 mW。
In the recent years, because the technology of integrated circuits develop rapidly, it improves the technique of mobility communication. Nowadays, the fourth generation of mobile communication has become popular, and mobile
communication devices have become a necessity. The emergence of femtocells has increased the coverage of communication signals to maintain good transmission
quality. In order to construct a femtocell base station capable of accurately transmitting packets, the design of a high resolution and high sample frequency digital-to-analog converter is very important.
In this paper, a 14-bit 300MHz digital-to-analog converter is achieved by current-steering architecture, and this 14-bit circuit consists of three segments. Two of it is a 6-bit thermometer-based converter, and the other is a 2-bit binary-weighted converter. The supply voltage in analog and digital is applied in 1.8 V and 1 V, respectively. From the measurement results, a peak SFDR of 44.72 dB is achieved in TSMC 0.18μm 1P6M mixed-signal CMOS, and the power consumption is 23.52 mW.
[1] D. A. Johns, and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons,Inc, 1997.
[2]P. E. Allen, and D. R. Holberg, CMOS Analog Circuit Design. Second Edition,Oxford University Press, Inc. 2002.
[3] A. V. den Bosch, M. A. F. Borremans, M. S. J. Steyaert, and W. Sansen, “A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter,” IEEE J. Solid-State
Circuits, vol.36,no.3, pp.315-324, 2001.
[4] M. Liu, Z. Zhu, and Y. Yang, “A high-SFDR 14-bit 500 MS/s current-steering D/A converter in 0.18 μm CMOS,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.
23, no. 12, pp. 3148-3152, Dec. 2015.
[5]Willy M.C. Sansen, Analog Design Essential, Springer, 2006.
[6] R. Jacob Baker, CMOS Mixed-Signal Circuit Design. Second Edition, Wiley, IEEE Press, 2008.
[7] N. Pal, P. Nandi, R. Biswas, and A. G. Katakwar, “Placement-Based Nonlinearity Reduction Technique for Differential Current-Steering DAC,” IEEE Very Large Scale
Integr. (VLSI) Syst., vol. 24, no. 1, pp. 233-242, Jan. 2016.
[8] A. V. den Bosch, M. Steyaert, and W. Sansen, Static and Dynamic Performance Limitations for High Speed D/A Converter, Springer US, 2004.
[9]D. A. Mercer, “Low-Power Approaches to High-Speed Current-Steering Digital-to-Analog Converters in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 42, pp. 1688-
1698, Jul. 2007.
[10] Alan Hasting, The art of analog layout second edition. Person Press, 2005.
[11]M. Karimian, S. Hashemi, A. Naderi, and M.Sawan,”Impact of Gradient Error on Switching Sequence in High-Accuracy Thermometer-Decoded Current-Steering
DACs,” IEEE International Symposium on Circuits and Systems, Seoul, South Korea, May, 2012.
[12] T. Chen, and G. G. E. Gielen, “A 14-bit 200-MHz Current-Steering DAC with Switching-Sequence Post-Adjustment Calibration” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2386-2394, Nov. 2007.
[13] R. Liu, and L. Pileggi, “Low-overhead Self-healing Methodology for Current Matching in Current-steering DAC,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62,no. 7, pp. 651-655, Jul. 2015.
[14] J. -H. Tsai, Y. –J. Chen, Y. -F. Lai, M. -H. Shen, and P. –C. Huang, “A 14-bit 200MS/s current-steering DAC achieving over 82dB SFDR with digitally-assisted calibration and dynamic matching techniques,” Proceedings of Technical Program of 2012 VLSI Design, Automation and Test(VLSI-DAT), Hsinchu, Taiwan, Apr. 2012.
[15]林韋徳,應用於電流汲取式數位類比轉換器之動態性能提升技術,國立成功大學,博士論文,中華民國一零二年六月。
[16]洪偉程,以 0.07mm2 實現之十二位元每秒二十億次取樣電流式數位類比轉換器,國立成功大學,碩士論文,中華民國一零二年六月。
[17]K. L. Chan, J. Zhu, and I. Galton, “A 150MS/s 14-bit Segmented DEM DAC with Greater than 83dB of SFDR across the Nyquist band,” IEEE Symposium on VLSI Circuits, Kyoto, Japan, Jun. 2007.
[18]W. Mao, Y. li, C. –H. Heng, and Y. Lian, “High Dynamic Performance Current-Steering DAC Design With Nested-Segment Structure,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 26, no. 5, pp.995-999, May 2018.
[19]L. Lai, X. Li, Y. Fu, Y. Liu, and H. Yang, “Demystifying and Mitigating Code-Dependent Switching Distortions in Current-Steering DACs,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 1, pp. 68-81, Jan. 2019.
[20]Brian C. Wadell, Transmission Line Design Handbook, Artech Print on Demand, May 1991.
[21] X. Li, Q. Wei, Z. Xu, H. Wang, and H. Yang, “A 14-bit 500MS/s CMOS DAC Using Complementary Switched Current Sources and Time-Relaxed Interleaving DRRZ,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 8, pp.2337-2347, Aug. 2014.