簡易檢索 / 詳目顯示

研究生: 楊博賀
Yang, Po-Ho
論文名稱: 時間反轉對稱性破缺在重費米子超導體UPt3之探討
Time-Reversal Symmetry Breaking in Heavy-Fermion Superconductor UPt3
指導教授: 吳文欽
Wu, Wen-Chin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 28
中文關鍵詞: 非常規重費米子超導體UPt3科爾偏角時間反轉對稱性破缺
英文關鍵詞: Unconventional heavy-fermion superconductor UPt3, Kerr rotation angle, Time-reversal symmetry breaking
DOI URL: https://doi.org/10.6345/NTNU202204642
論文種類: 學術論文
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近期的科爾偏角(Kerr rotation angle)實驗清楚地指出重費米子超導體UPt3的B相態有時間反轉對稱性破缺(time-reversal symmetry breaking)現象。採用當今廣為採信的配對對稱性E1g及E2u模型,我們嘗試單帶理論(one-band theory)計算超導光導電率(optical conductivity)藉以和實驗做比較。結果發現無論是E1g或E2u模型,單帶計算結果均不足以解釋實驗所觀察到的現象,主要原因是套入實驗用的1550 nm光波長,理論預測的科爾偏角效應比實驗觀察到的結果至少小兩個數量級以上。因此我們大膽猜測科爾偏角實驗在UPt3超導體看到的效應可能是不止單帶的貢獻。

    Recent Kerr rotation angle experiments have revealed that time-reversal symmetry (TRS) is broken in B-phase of the unconventional heavy-fermion superconductor UPt3. Based on the widely used E1g and E2u pairing models, we perform a one-band calculation on the optical conductivity and compare the results with the experiments. It is shown that with one band, both E1g and E2u models fail to explain the data because at 1550 nm wavelength of the light used experimentally, the predicted effects are at least two orders of magnitude smaller than the observed ones. We argue that the observed Kerr rotation angle effect on superconducting UPt3 might be due to more than one band.

    目錄 第一章 導論 1.1 重費米子超導體UPt3 p.1 1.2 配對對稱性E1g及E2u模型 p.3 1.3 UPt3的時間反轉對稱性破缺 p.6 1.4 UPt3的科爾偏角實驗 p.8 第二章 理論與模型 2.1 科爾偏角與光導電率 p.9 2.2 Kubo規論 p.11 第三章 結果與討論 3.1 E1g模型 p.13 3.2 E2u模型. p.15 第四章 結論 p.17 附錄A. 時間反轉對稱性 p.18 附錄B. 科爾效應與科爾偏角 p.22 附錄C. 超導體的Kubo函數 p.24 參考文獻 p.28

    參考文獻

    [1]. G. R. Stewart et al., Phys. Rev. Lett. 52, 679 (1984).
    [2]. J. Bardeen, L. N. Cooper, and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).
    [3]. R. A. Fisher et al., Phys. Rev. Lett. 62, 1411 (1989).
    [4]. K. Hasselbach, L. Taillefer, J. Flouquet, Phys. Rev. Lett. 63, 93 (1989).
    [5]. S. Adenwalla et al., Phys. Rev. Lett. 65, 2298 (1990).
    [6]. A. Huxley et al., Nature 406,160 (2000).
    [7]. De Visser, A. Menovsky, J.J.M. Franse, Physica B+C 147, 81 (1987).
    [8]. J. A. Sauls, Adv. Phys. 43, 113 (1994).
    [9]. J. D. Strand et al., Science 328, 1368 (2010).
    [10]. M. J. Graf, S.-K. Yip, J. A. Sauls, Phys. Rev. B 62, 14393 (2000).
    [11]. S. K. Yip and A. Garg, Phys. Rev. B 48, 3304 (1993).
    [12]. W. C. Wu, and R. Joynt, Phys. Rev. B 65, 104521 (2002).
    [13]. Matthias J. Graf, arXiv:cond-mat/9810023 (1998).
    [14]. R. Joynt and L.Taillefer, Rev. Mod. Phys. 74, 235 (2002).
    [15]. R. N. Kleiman et al., Phys. Rev. Lett. 69, 3120 (1992).
    [16]. U. Yaron et al., Phys. Rev. Lett. 78, 3185 (1997).
    [17]. G. M. Luke et al., Phys. Rev. Lett. 71, 1466 (1993).
    [18]. J. D. Strand, D. J. Van Harlingen, J. B. Kycia, W. P. Halperin, Phys. Rev. Lett. 103, 197002 (2009).
    [19]. B. Lussier, B. Ellman, L. Taillefer, Phys. Rev. B 53, 5145 (1996).
    [20]. E. R. Schemm et al., Science 345, 190 (2014).
    [21]. A.Kapitulnik et al., New Journal of Physics, 11 (2009).
    [22]. P. N. Argyres, Phys. Rev 97, 334 (1955).
    [23]. G. D Mahan, Many-Particle Physics (Springer, 2000), Section 3.8.
    [24]. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Cengage Leaning, 1976)
    [25]. K.-H. Bennemann and J. B.Ketterson, Superconductivity:Volume 1:Conventional and Unconventional Superconductors (Springer, 2008).
    [26]. Y. Tsutsumi et al., J. Phys. Soc. Jpn. 81, 074717 (2012).
    [27]. J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, 1994), Sec.4.4 .
    [28]. Tone, Wikipedia, articles” Magneto-optic Kerr effect”(URL: https://upload.wikimedia.org/wikipedia/commons/b/b2/MOKE.PNG)
    [29]. (URL:https://fys.kuleuven.be/iks/nvsf/experimental-facilities/magneto-optical-kerr-effect-moke)

    無法下載圖示 本全文未授權公開
    QR CODE