簡易檢索 / 詳目顯示

研究生: 陳怡君
Chen, Yi-Chun
論文名稱: 探索空間能力與領域特定知識對科學學科表現之影響
Exploring the Effects of Spatial Ability and Domain-Specific Knowledge on Student’s Science Achievement
指導教授: 楊芳瑩
Yang, Fang-Ying
學位類別: 博士
Doctor
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 131
中文關鍵詞: 空間能力領域特定知識科學學科表現知識結構訊息處理模式眼球追蹤法中介變項
英文關鍵詞: spatial ability, domain-specific knowledge, science achievement, knowledge structure, information-processing model, eye-tracking, mediator
DOI URL: https://doi.org/10.6345/NTNU202204049
論文種類: 學術論文
相關次數: 點閱:251下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在選定地球科學課程中,與空間思考有關的「太陽視軌跡」為主題,分別以「空間能力測驗」、「標準化測驗」、「天文繪圖測驗」三項測驗代表「領域廣泛空間能力」、「領域特定知識」及「科學學科成效」指標,探討空間能力、領域特定知識與科學學科表現三者間的關係。另外,本研究使用眼球追蹤法記錄受試者在解題時的注意力分配及解題歷程,以釐清領域廣泛的空間能力與領域特定知識在科學學科表現中扮演的角色。進一步透過晤談,以內容分析法比較教師與在領域特定知識及科學學科表現不同的三組學生(高分組、中分組、低分組)在解答空間形式的問題時的認知模式、解題行為、知識結構、策略使用的差異,以進一步釐清領域特定知識在科學學科表現上的作用。本研究受試對象為具有基礎先備知識的大一及大二學生,測驗及晤談資料的有效樣本共40人,含理組19人(男性9人;女性10人)及文組21人(男性10人,女性11人),扣掉眼動資料缺漏的兩位學生後,眼動的有效資料為38人。另有12位在高中任教的地球科學教師參與研究,這些教師提供本研究的專家資料來源。
    研究結果發現: 1..領域特定知識較佳者在解答單一選擇題形式的標準化試題的歷程上,傾向較能辨認解題關鍵區域且花費較多的時間比例在這些(尤其是圖片解題關鍵)區域上、在題幹區域花費較長時間,以形成問題表徵、似乎不完全採用前向思考;也會搭配後向思考的解題策略。2.領域廣泛的空間能力與解題時的注意力分配有關,空間能力較差者相較於中等程度以上者分配較少的時間在圖片區域上。3.無論教師或高分組、低分組學生,在解答「天文繪圖測驗」時皆傾向找出一致的通則解答題目,但低分組傾向直覺的心智運作,教師能以科學專有名詞明確說明這些解題技能及策略的用意、能靈活採用科學模型搭配思考、追求精確數值而非模糊地陳述性質。4.以領域特定知識為中介變項的分析顯示,領域廣泛的空間能力並非直接影響學生的科學學科表現,而是透過領域特定知識,影響最終的科學學科表現。另外,在科學學科成效表現不同的高、中、低分組的主要差異是在陳述性知識及程序性知識的豐富程度上。
    最後,本研究對實務上的教學及教材設計提供以下建議:1.對低空間能力者的學習教材應給予視覺空間上的援助、2.大部分學習者對教材的需求是促進概念之間的連結、3.專業知識的養成主要仰賴長期記憶的知識品質。

    The study aimed to examine the interactions among spatial ability, domain-specific knowledge, and student’s science achievement in the context of ‘The apparent path of the sun’ which is believed to be one of the topics requiring spatial thinking in the secondary earth science curriculum in Taiwan. Three assessments were used to assess domain-general spatial ability (The Purdue Visualization of Rotations Test), domain-specific knowledge (a test adopted from the entrance examination for high schools and colleges in Taiwan) and science achievement (a self-constructed test on the topic of the apparent path of the sun). Eye-tracking method was employed to record the visual attention distribution and the process of problem solving to clarify the roles of domain-general spatial ability and domain-specific knowledge in student’s science achievement. By interview and content analysis on participants’ knowledge structures and problem solving strategies, the effects of domain-specific knowledge on science achievement were explored. Forty university students who were in non-earth-science majors but had taken introductory earth science lessons in high schools voluntarily participated in the study. In addition, twelve teachers who were teaching earth science in high schools were invited as the expert group who provided the criteria for further distinction between experts and novices.
    The study results are shown below: First, students who showed better domain-specific knowledge could tell better the key information related to problem-solving, attend more to these (especially figure) areas, and spend more time on the problem description to form the problematic representation. They seemed to adapt both thinking forward and backward strategies. Second, students with less domain-general spatial ability would spend less time on figures than those with medium and high spatial ability. Third, most participants tended to find a coherent strategy to draw the apparent paths of the sun with four different latitudes, regardless of whether they are teachers, high or low science achievement students. However, teachers could use scientific terms to explicitly elaborate the meanings of their strategies and skills, and could coordinate better the scientific model (i.e., Celestial sphere model) in solving problems. Moreover, their answers were more accurate (with quantitative value. Fourth, further statistical analysis indicated that domain-specific knowledge fully mediated the effect of domain-general spatial ability on student’s science achievement. Moreover, students' knowledge structures, rather than their spatial abilities, determined their performance of the domain-specific problem solving involving spatial thinking.
    Based on the study findings, three suggestions for the design of teaching and learning materials were provided. First, materials offering visual-spatial assistance are needed for lower spatial ability students. 2. For most students, making connections between relevant concepts are most critical in solving domain-specific spatial problems. 3. Developing the expertise in science relies primarily on the quality of domain-specific knowledge stored in long-term memory.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 4 第三節 研究的重要性 5 第四節 名詞釋義 5 第二章 文獻探討 8 第一節 空間能力 8 壹、空間能力的組成及空間能力測驗 9 貳、空間能力的再定義 12 參、空間能力測驗表現與工作記憶的關係 13 第二節 空間能力與科學學習的關係 14 壹、空間能力與職業性向的關係 14 貳、空間能力對學科表現的影響– 領域廣泛或領域特定? 15 第三節 專業知識的結構與習得 19 壹、專家與生手的差異 20 貳、專家的訊息處理模式 21 第四節 運用眼球追蹤法探索認知歷程 25 第三章 研究方法 27 第一節 研究架構及研究問題 27 第二節 研究假設 30 第三節 研究對象 32 壹、教師樣本 32 貳、學生樣本 33 第四節 研究工具 34 壹、空間能力測驗 34 貳、標準化試題 35 參、眼球追蹤法 35 一、眼動儀 35 二、眼動指標與相對應之認知行為 36 肆、天文繪圖測驗 37 伍、晤談法 39 第五節 實驗流程 41 第六節 資料分析 42 壹、質性資料分析 42 一、長期記憶的知識結構 42 二、解題關鍵區域的判定準則 44 三、天文繪圖測驗的使用策略及運作法則分析 45 貳、量化資料分析 46 一、敘述性統計分析 46 二、推論性統計分析 46 第四章 研究結果與討論 50 壹、敘述性統計成果 50 貳、推論性統計成果 51 第一節 學生對解題關鍵區域的判讀及解題過程中的注意力分佈與「標準化試題」表現的關係 52 壹、「標準化試題表現」與「解題關鍵區域的判讀」之相關性 52 貳、「標準化試題」表現與在閱讀題目時的注意力分佈的關係 53 第二節 在「標準化試題」上表現不同的學生 之知識結構差異分析 56 壹、陳述性知識的細目及學生提取狀況 56 貳、程序性知識的細目及學生提取狀況 60 參、學生的知識結構差異分析 64 肆、「標準化試題」表現不同的學生之解題歷程比較—眼動分析 65 第三節 探討空間能力與解答標準化試題過程中 注意力分佈的關係 70 壹、不同空間能力的學生在圖片及文字的注意力分佈差異比較 70 貳、空間能力與解題過程中的注意力控制的關聯 72 第四節 「空間能力」、「領域特定知識」與「科學學科表現」之中介模型分析 73 第五節 「天文繪圖測驗」之質性資料分析 78 壹、教師在「天文繪圖測驗」採用的策略分析 78 貳、學生之「天文繪圖測驗」之策略分析 86 第六節 探討「天文繪圖測驗」、「空間能力」、「標準化試題」與「知識表徵」之關連 91 壹、「空間能力」、「標準化試題」的表現、「知識表徵」與「天文繪圖測驗」的關係 91 貳、「空間能力」、「概念性命題」與「科學學科表現」之中介模型分析 94 第五章 綜合討論與展望 97 第一節 研究結果及推論 97 壹、領域廣泛的空間能力、領域特定知識、科學學科表現間的關係 98 路徑一:領域廣泛的空間能力促成領域特定知識的形成 99 路徑二:長期記憶的知識結構影響最終的科學學科表現 100 貳、領域特定知識及空間能力對解題歷程的視覺注意力的影響 101 參、教師與學生的解題歷程比較 102 第二節 教育意涵與教學建議 104 第三節 研究限制與未來展望 107 壹、研究對象 107 貳、研究素材 107 參、其他影響因子 108 參考文獻 109 附錄一 空間能力測驗 119 附錄二 標準化試題 121 附錄三 天文繪圖測驗測驗 125 附錄四 標準化試題各題的解題關鍵區域 128

    邱皓政(2010)。量化研究與統計分析:SPSS/PASW資料分析範例解析(第五版)。台北:五南。
    蔡介立、顏妙璇與汪勁安(2005)。眼睛移動測量及在中文閱讀研究之應用。應用心理學研究,28,91-104。
    陳怡君(印刷中)。淺談空間能力的性別差異與科學、科技、工程及數學類型的職業選擇。科學教育月刊。
    陳湘淳、蔣文祁(2011)。注意力控制在工作記憶發展中的角色。應用心理學研究,52,95-127。
    Ackerman, P. L. (1988). Determinants of individual differences during skill acquisition: Cognitive abilities and information processing. Journal of Experimental Psychology: General, 117(3), 288–318.
    Ackerman, P., & Beier, M. E. (2003). Trait complexes, cognitive investment, and domain knowledge. In R. J. Sternberg & E. L. Grigorenko (Eds.), The psychology of abilities, competencies, and expertise (pp. 1–30). New York, NY: Cambridge University Press.
    Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.
    Anderson, J. R. (1993). Rules of mind. Hillsdale, NJ: Erlbaum.
    Anderson, J. R. & Schunn, C. D. (2000). Implications of the ACT-R learning theory: No magic bullets. In R. Glaser, (Ed.), Advances in instructional psychology: Educational design and cognitive science (Vol. 5, pp. 1-34). Mahwah, NJ: Lawrence Erlbaum Associates.
    Anderson, J. (2009). Cognitive psychology and its implication. NY: Worth Publishers.
    Baddeley, A. (1986). Working memory. Oxford, UK: Clarendon Press.
    Barba, R. H. (1990). A comparison of expert and novice earth and space science teachers’ problem solving abilities (Doctoral Dissertation). The Pennsylvania State University.
    Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173.
    Billington, J., Baron-Cohen, S., & Wheelwright, S. (2007). Cognitive style predicts entry into physical sciences and humanities: Questionnaire and performance tests of empathy and systemizing. Learning and Individual Differences, 17(3), 260-268. doi:10.1016/j.lindif.2007.02.004
    Blazhenkova, O., & Kozhevnikov, M. (2010). Visual-object ability: A new dimension of non-verbal intelligence. Cognition, 117(3), 276-301. doi:10.1016/j.cognition.2010.08.021
    Bodner, G. M., & Guay, R. B. (1997). The Purdue visualization of rotation test. The
    Chemical Educator, 2(4), 1-17.
    Boeddinghaus, J., Ragni, M., Knauff, M., & Nebel, B. (2006). Simulating spatial reasoning using ACT-R. In Proceedings of the ICCM 06 (pp. 62–67). Mahwah, NJ: Lawrence Erlbaum Associates.
    Borich, G. D., & Bauman, P. M. (1972). Convergent and discriminant validation of the French and Guilford-Zimmerman spatial orientation and spatial visualization factors. In Proceedings of the Annual Convention of the American Psychological Association (Vol. 7, pt. 1, pp. 9-10).
    Brown, A. L. (1990). Domain-specific principles affect learning and transfer in children. Cognitive science, 14(1), 107-133.
    Carroll, J. B. (1993). Human cognitive abilities: a survey of factor-analytic studies. Cambridge; New York: Cambridge University Press.
    Ceci, S. J., Ginther, D. K., Kahn, S., & Williams, W. M. (2014). Women in Academic Science: A Changing Landscape. Psychological Science in the Public Interest, 15(3), 75-141. doi:10.1177/1529100614541236
    Chase, W. G.., & Simon, H. A. (1973). The mind’s eye in chess. In W. G. Chase (Ed.), Visual information processing (pp. 215-281). New York: Academic Press.
    Chen, Y. C., & Yang, F. Y. (2014). Probing the relationship between process of spatial problems solving and science learning – An eye tracking approach. International Journal of Science and Mathematics Education, 12(3), 579-603.
    Chi, M. T. H., Glaser, R., & Rees, E. (1982). Experts in problem solving. In R. J. Sternberg (Eds.), Advance in the psychology of expertise (Vol.1, pp. 7-76). Hillsdale, NJ: Erlbaum.
    Chi, M. T. H., Glaser, R., & Farr, M. J. (Eds), (1988). The nature of expertise. Hillsdale, NJ: Lawrence Erlbaum Associates.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, New Jersey :Lawrence Erlbaum Associate, Inc.
    Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/ correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.
    Cronbach, L. J. (1949). Essential of psychological testing. New York: Harper.
    Duschl, R. & Hamilton, R. (2011) Learning Science. In R. Mayer & P. Alexander (Eds.), Handbook of Research on Learning and Instruction (pp. 78-107). New York: Routledge Press.
    Eliot, J., & Smith, I. M. (1983). An international directory of spatial tests. Windsor, England: NFER/ Nelson; and Atlantic Highlands, NJ: Humanities Press.
    Falvo, D. A., & Suits, J. P. (2009). Gender and spatial ability and the use of specific labels and diagrammatic arrows in a micro-level chemistry animation. Journal of Educational Computing Research, 41(1), 83-102. doi: 10.2190/EC.41.1.d
    Gagné, E. D., Yekovich, C.W., & Yekovich, F. R. (1993). The cognitive psychology of school learning (2nd ed.). New York, NY: Harper-Collins.
    Glaser, R., & Chi, M. T. H. (1988). Overview. In M. T. H. Chi, R. Glaser, & M. Farr (Eds.), The nature of expertise (pp. xv-xxxvi). Hillsdale, NJ: Erlbaum.
    Glass, G. V., & Hopkins, K. D. (1996). Statistical methods in education and psychology. (3rd ed.). Boston: Allyn & Bacon.
    Gobert, F. & Siman, H. A. (1996). Recall of random and distorted chess position: Implications for the theory of expertise. Memory and Cognition, 24, 493-503.
    Goldberg, J., & Meredith, W. (1975). A longitudinal study of spatial ability. Behavior Genetics, 5, 127-135.
    Goodwin, W.M. (2009). Visual representations in science. Philosophy of Science, 76(3), 372–390.
    Grant, E. R., & Spivey, M. J. (2002). Guiding attention produces inferences in diagram-based problem solving. In Diagrammatic representation and inference (pp. 236-248). Springer Berlin Heidelberg.
    Grant, E. R., & Spivey, M. J. (2003). Eye movements and problem solving: guiding attention guides thought. Psychological Science, 14(5), 462-466.
    Groen, M., & Noyes, J. (2010). Solving problems: How can guidance concerning task-relevancy be provided? Computers in Human Behavior, 26(6), 1318-1326.
    Hegarty, M., Carpenter, P. A., & Just, M. A. (1991). Diagrams in the comprehension of scientific text. In Barr, R., Kamil, M. L., Mosenthal, P. B., & Pearson, P. D., (Eds.), Handbook of Reading Research (Vol. 2, pp. 641-668). Longman, New York.
    Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425-447. doi:10.1016/s0160-2896(02)00116-2
    Hegarty, M. & Waller, D. (2006). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.), Handbook of Visuospatial Thinking (pp.121-169). Cambridge University Press.
    Hegarty, M. (2010). Components of spatial intelligence. Psychology of Learning and Motivation, 52, 265-297.
    Hegarty, M., Canham, M. S., & Fabrikant, S. I. (2010). Thinking About the Weather: How Display Salience and Knowledge Affect Performance in a Graphic Inference Task. Journal of Experimental Psychology-Learning Memory and Cognition, 36(1), 37-53. doi:10.1037/a0017683
    Hegarty, M., Crookes, R. D., Dara-Abrams, D., & Shipley, T. F. (2010). Do all science disciplines rely on spatial abilities? Preliminary evidence from self-report questionnaires. In C. Hölscher, T. F. Shipley, J. A. Bateman, & N. S. Newcombe (Eds.), Spatial Cognition VII. (pp.85-94). Springer Berlin Heidelberg.
    Hoffman, R. R. (1998). How can expertise be defined? Implications of research from cognitive psychology. In R. Williams, W. Faulkner, & J. Fleck (Eds.), Exploring expertise (pp. 81–100). New York: Macmillan.
    Ishikawa, T. (2013). Geospatial Thinking and Spatial Ability: An Empirical Examination of Knowledge and Reasoning in Geographical Science. Professional Geographer, 65(4), 636-646. doi: 10.1080/00330124.2012.724350
    Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental rotation and individual differences in spatial ability. Psychological Review, 92, 137-172.
    Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99, 122-149.
    Kaller, C. P., Rahm, B., Bolkenius, K., & Unterrainer, J. M. (2009). Eye movements and visuospatial problem solving: Identifying separable phases of complex cognition. Psychophysiology, 46(4), 818-830.
    Keehner, M., Lippa, Y., Montello, D. R., Tendick, F., & Hegarty, M. (2006). Learning a spatial skill for surgery: How the contributions of abilities change with practice. Applied Cognitive Psychology, 20(4), 487-503. doi:10.1002/acp.1198
    Keehner, M. (2011). Spatial cognition through the keyhole: How studying a real-world domain can inform basic science-and vice versa. Topics in Cognitive Science, 3(4), 632-647.
    Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31(4), 549-579.
    Kozhevnikov, M., & Hegarty, M. (2001). Impetus beliefs as default heuristics: Dissociation between explicit and implicit knowledge about motion. Psychonomic Bulletin & Review, 8(3), 439-453.
    Kyllonen, P. C. (1984). Information processing analysis of spatial ability. (Doctoral dissertation, Stanford University) Dissertation Abstracts International, 45, 819A.
    Kyllonen, P. C., Lohman D. F., & Woltz, D. J. (1984). Componential modeling of alternative strategies for performing spatial tasks. Journal of Educational Psychology, 6, 1325-1345.
    Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working memory capacity?! Intelligence, 14, 389-433.
    Lai, M. L., Tsai, M. J., Yang, F. Y., Hsu, C. Y., Liu, T. C., Lee, S. W. Y., . . . Tsai, C. C. (2013). A review of using eye-tracking technology in exploring learning from 2000 to 2012. Educational Research Review, 10, 90-115.
    Land, M. F. (2007). Fixation strategies during active behavior: a brief history. In Van Gompel, R. P. G., Fischer, M. H., Murray, W. S., & Hill, R. L. (Eds.), Eye movements: A window on mind and brain (pp. 76-95). Oxford: Elsevier.
    Lemos, G. C., Abad, F. J., Almeida, L. S., & Colom, R. (2013). Sex differences on g and non-g intellectual performance reveal potential sources of STEM discrepancies. Intelligence, 41(1), 11-18. doi:10.1016/j.intell.2012.10.009
    Leslie, S. J., Cimpian, A., Meyer, M., & Freeland, E. (2015). Expectations of brilliance underlie gender distributions across academic disciplines. Science, 347(6219), 262-265.
    Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492-527.
    Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. Sternberg (Ed.), Advances in psychology of human intelligence (pp. 181-248). Hillsdale, NJ: Erlbaum.
    Lohman, D. F. (1996). Spatial ability and G. In I. Dennis & P. Tapsfield (Eds.), Human abilities: Their nature and assessment (pp. 97–116). Hillsdale, NJ: Erlbaum
    Lowe, R. K. (1993). Constructing a mental representation from an abstract technical diagram. Learning and Instruction, 3, 157-179.
    Lowe, R. K. (1996). Background knowledge and the construction of a situational representation from a diagram. European Journal of Psychology of Education, 11, 377-397.
    Lubinski, D. (2010). Spatial ability and STEM: A sleeping giant for talent identification and development. Personality and Individual Differences, 49(4), 344-351. doi:10.1016/j.paid.2010.03.022
    Manning, J. T., Barley, L., Walton, J., Lewis-Jones, D. I., Trivers, R. L., Singh, D., . . . Szwed, A. (2000). The 2nd: 4th digit ratio, sexual dimorphism, population differences, and reproductive success: evidence for sexually antagonistic genes? Evolution and Human Behavior, 21(3), 163-183. doi:10.1016/s1090-5138(00)00029-5
    Mathewson, J. H. (1999). Visual-spatial thinking: an aspect of science overlooked by educators. Science Education, 83(1), 33–54.
    Mayer, R. E. (2008). Applying the science of learning: evidence-based principles for the design of multimedia instruction. American Psychologist, 63(8), 760.
    Merchant, Z., Goetz, E. T., Keeney-Kennicutt, W., Kwok, O. M., Cifuentes, L., & Davis, T. J. (2012). The learner characteristics, features of desktop 3D virtual reality environments, and college chemistry instruction: A structural equation modeling analysis. Computers & Education, 59(2), 551-568. doi:10.1016/j.compedu.2012.02.004
    Miller, G. A. (1956). The magic number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81-97.
    Mulholland, J. & Ginns, I. (2008). College MOON Project Australia: preservice teachers learning about the moon’s phases. Research in Science Education, 38(3), 385-399.
    Newcombe, N. S., & Stieff, M. (2012). Six Myths about Spatial Thinking. International Journal of Science Education, 34(6), 955-971. doi:10.1080/09500693.2011.588728
    Newcombe, N. S., & Shipley, T. F. (2015). Thinking about spatial thinking: New typology, new assessments. In Studying visual and spatial reasoning for design creativity (pp. 179-192). Springer Netherlands.
    Ozcelik, E., Arslan-Ari, I. & Cagiltay, K. (2010). Why does signaling enhance multimedia learning? Evidence from eye movements. Computers in Human Behavior, 26(1), 110–117.
    Ozdemir, G. (2010). Exploring visuospatial thinking in learning about Mineralogy: Spatial orientation ability and spatial visualization ability. International Journal of Science and Mathematics Education, 8(4), 737-759.
    Päßler, K., & Hell, B. (2012). Do Interests and Cognitive Abilities Help Explain College Major Choice Equally Well for Women and Men? Journal of Career Assessment, 20(4), 479-496. doi: 10.1177/1069072712450009
    Paul, A. M. (2015). Researchers find that frequent tests can boost learning. Scientific American, 313(2), 1–7.
    Peters, M., Lehmann, W., Takahira, S., Takeuchi, Y., & Jordan, K. (2006). Mental rotation test performance in four cross-cultural samples (N=3367): Overall sex differences and the role of academic program in performance. Cortex, 42(7), 1005-1014.
    Petitto, L. A., & Dunbar, K. N. (2009). Educational neuroscience: new discoveries from bilingual brains, scientific brains, and the educated mind. Mind, brain and education: the official journal of the International Mind, Brain, and Education Society, 3(4), 185.
    Radach, R., & Kennedy, A. (2004). Theoretical perspectives on eye movements in reading: Past controversies, current issues, and an agenda for future research. In R. Radach, A. Kennedy, & K. Rayner (Eds.), Eye movements and information processing during reading (pp. 3–26). New York: Psychology Press.
    Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological bulletin, 124(3), 372-422.
    Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. Quarterly Journal of Experimental Psychology, 62(8), 1457–1506.
    Reingold, E. M., Charness, N., Pomplun, M., & Stampe, D. M. (2001). Visual span in expert chess players: Evidence from eye movements. Psychological Science, 12(1), 48-55.
    Reingold, E. M., Charness, N., Schultetus, R. S., & Stampe, D. M. (2001). Perceptual automaticity in expert chess players: Parallel encoding of chess relations. Psychonomic Bulletin & Review, 8(3), 504-510.
    Rittle-Johnson, B., & Schneider, M. (2015). Developing Conceptual and Procedural Knowledge of Mathematics. In Cohen Kadosh, R., & Dowker, A. (Eds.), The Oxford Handbook of Numerical Cognition (pp. 1118–1134). Oxford, UK: Oxford University Press.
    Roberts, A. S. (2007). Predictors of future performance in architectural design education. Educational Psychology, 27(4), 447-463. doi:10.1080/01443410601104361
    Rohde, T. E., & Thompson, L. A. (2007). Predicting academic achievement with cognitive ability. Intelligence, 35(1), 83-92. doi: 10.1016/j.intell.2006.05.004
    Sanchez, C. A., & Wiley, J. (2014). The role of dynamic spatial ability in geoscience text comprehension. Learning and Instruction, 31, 33-45. doi: 10.1016/j.learninstruc.2013.12.007
    Sedlmeier, P., & Gigerenzer, G. (1989). Do studies of statistical power have an effect on the power of studies? Psychological Bulletin, 105, 309-316.
    Self, C. M., & Golledge, R. G. (1994). Sex-related differences in spatial ability: what every geography educator should know. Journal of Geography, 93, 234-243. doi: 10.1080/00221349408979727.
    Smith, I. M. (1964). Spatial ability: Its educational and social significance. San Diego, CA: Robert P. Knapp.
    Snow, R. E. (1980). Aptitude processes. In R. E. Snow, P. A. Federico, & W. E. Montague (Eds.). Aptitude, learning, and instruction (Vol. 1 pp. 27-63). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Spelke, E. S. (2005). Sex differences in intrinsic aptitude for mathematics and science?: a critical review. American Psychologist, 60(9), 950.
    Sternberg, R. J. (2009). Cognitive psychology (5th Ed.). Belmont, CA: Thomson Wadsworth.
    Stieff, M. (2007). Mental rotation and diagrammatic reasoning in science. Learning and Instruction, 17(2), 219-234.
    Stull, A. T., Hegarty, M., Dixon, B., & Stieff, M. (2012). Representational Translation with Concrete Models in Organic Chemistry. Cognition and Instruction, 30(4), 404-434. doi: 10.1080/07370008.2012.719956
    Thomas, L. E., & Lleras, A. (2007). Moving eyes and moving thought: On the spatial compatibility between eye movements and cognition. Psychonomic bulletin & review, 14(4), 663-668.
    Tolar, T. D., Lederberg, A. R., & Fletcher, J. M. (2009). A structural model of algebra achievement: computational fluency and spatial visualization as mediators of the effect of working memory on algebra achievement. Educational Psychology, 29(2), 239-266. doi:10.1080/01443410802708903
    Tsai, M. J., Hou, H. T., Lai, M. L., Liu, W. Y., & Yang, F. Y. (2012). Visual attention for solving multiple-choice science problem: An eye-tracking analysis. Computers & Education, 58(1), 375-385. doi:10.1016/j.compedu.2011.07.012
    Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The Malleability of Spatial Skills: A Meta-Analysis of Training Studies. Psychological Bulletin, 139(2), 352-402. doi:10.1037/a0028446
    Vicente, K. J., & De Groot, A. D. (1990). The memory recall paradigm: straightening out the historical record. American Psychologist, 45, 285-287.
    Vincent, W. J., & Allmandinger, M. F. (1971). Relationships among selected tests of spatial orientation ability. Journal of Motor Behavior, 3(3), 259-264.
    Vorstenbosch, M. A. T. M., Klaassen, T. P. F. M., Donders, A. R. T., Kooloos, J. G. M., Bolhuis, S. M., & Laan, R. F. J. M. (2013). Learning anatomy enhances spatial ability. Anatomical Sciences Education, 6(4), 257-262. doi: 10.1002/ase.1346
    Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative. Journal of Educational Psychology, 101(4) 817-835.
    Wilhelm, J. (2009). Gender Differences in Lunar-related Scientific and Mathematical Understandings. International Journal of Science Education, 31(15), 2105-2122. doi: 10.1080/09500690802483093
    Wu, H. K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465-492.
    Yoon, D., Narayanan, N. H. (2004). Predictors of success in diagrammatic problem solving. In A. Blackwell, K. Marriott & A. Shimojima (Eds.), Diagrammatic Representation & Inference, LNAI 2980, Berlin: Springer-Verlag, pp. 301-315

    下載圖示
    QR CODE