簡易檢索 / 詳目顯示

研究生: 柯佳伶
Ke, Jia-Ling
論文名稱: 應用非破壞性光學影像探討酸性環境於牙齒結構影響
Investigation of the effects on teeth due to acid environment using noninvasive optical imaging
指導教授: 李亞儒
Lee, Ya-Ju
蔡孟燦
Tsai, Meng-Tsan
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 62
中文關鍵詞: 光學同調斷層掃描牙齒去礦化齲齒
英文關鍵詞: optical coherence tomography, tooth, demineralization, dental caries
DOI URL: http://doi.org/10.6345/THE.NTNU.EPST.016.2018.E08
論文種類: 學術論文
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 牙齒在口腔環境中會不斷地進行再礦化(Remineralization)與去礦化 (Demineralization) 反應,當去礦化反應的速率大於再礦化就容易造成齲齒,因此若能早期發現將可以預防蛀牙的發生。由於光學同調斷層掃描系統(Optical Coherence Tomography, OCT)相較於其他技術具有非侵入性、高速成像、高解析度等優點,因此在此研究中我們利用光學同調斷層掃描觀察牙齒去礦化的早期變化,期待未來我們可應用光學同調斷層掃描於早期齲齒的檢測。
    在此研究中,我們利用37%磷酸(Phosphoric acid etching gel)來模擬牙齒的酸性環境並加速實驗地進行,因此我們將37%磷酸塗於離體人類牙齒表面以產生酸蝕反應,另外我們利用頻域式光學同調斷層掃描系統(Spectral-Domain OCT)觀察牙齒去礦化過程中牙齒表面的型態變化與散射強度變化,另外也利用光學同調斷層掃描探討酸蝕的速率,由我們實驗結果驗證光學同調斷層掃描可定量牙齒酸蝕所產生的結構變化,可作為早期齲齒的檢測工具。

    The teeth undergo constant remineralization and demineralization reactions in the oral environment. When the rate of demineralization is greater than remineralization, it is easy to cause dental caries, because early detection can prevent tooth decay. Because optical coherence tomography (OCT) has the advantages of non-invasive, high-speed imaging and high resolution compared to other techniques, in this study we used optical coherence tomography to observe the early demineralization of teeth. Looking forward to the future we can apply optical coherence tomography to the detection of early caries.
    In this study, we used 37% phosphoric acid gel to simulate the acidic environment of the teeth and accelerated the experiment. Therefore, we applied 37% phosphoric acid to the surface of isolated human teeth to produce acid etching reaction. In addition, we used spectral-domain optical coherence tomography (Spectral-Domain OCT) was used to observe the changes of the shape and scattering intensity of the tooth surface during tooth demineralization. In addition, the optical coherence tomography was used to investigate the rate of acid etching, which was verified by our experimental results. Optical coherence tomography can quantify the structural changes caused by tooth erosion and can be used as a detection tool for early caries.

    中文摘要 i 目錄 iii 圖目錄 vi 第一章 序論 1 1.1 前言 1 1.2 研究動機 1 1.3 牙齒簡介 3 1.3.1 牙齒組成 3 1.3.2 蛀牙成因 5 1.3.3 去礦化與再礦化 5 1.4 文獻回顧 8 第二章 光學同調斷層掃描技術 13 2.1 光學同調斷層掃描技術簡介 13 2.2 光學同調斷層掃描原理 13 2.3 光學同調斷層掃描影像解析度 16 2.4 光學同調斷層掃描技術分類 18 2.4.1 時域式光學同調斷層掃描(TD-OCT) 18 2.4.2 頻域式光學同調斷層掃描(SD-OCT) 19 2.4.3 掃頻式光學同調斷層掃描(SS-OCT) 20 2.5 OCT光源選擇 21 2.5.1 波長 21 2.6 光學同調斷層掃描和不同成像技術之比較 23 第三章 實驗介紹與設備 25 3.1 實驗準備與流程 25 3.1.1 實驗前準備 25 3.1.2 酸蝕劑的選用 26 3.2 研究方法 27 3.2.1 光學同調斷層掃描系統架構 27 3.2.2 掃描式電子顯微鏡 28 3.3 實驗分組設計 30 第四章 實驗過程與結果 32 4.1 掃描式電子顯微鏡 32 4.2 短時間觀察 34 4.3 長時間觀察 41 4.4 表面散射特性分析 50 4.5 粗糙度分析 52 第五章 結論與未來工作 58 第六章 參考文獻 59

    [1] Bruce R. Whiting, Parinaz Massoumzadeh, Orville A. Earl, Joseph A. O'Sullivan, Donald L. Snyder, Jeffrey F. Williamson, “Properties of preprocessed sinogram data in x‐ray computed tomography.” Medical Physics. 33(9), (2016).
    [2] E. Alboliras, Z. M. Hijazi, L. Lopez and D. J. Hagler, “Magnetic Resonance Imaging.” In Visual Guide to Neonatal Cardiology (2018).
    [3] F. I. Jackson, Z. Lalani, ”Ultrasound in the diagnosis of lymphoma : A review.” Journal of Clinical Ultrasound. 17(3), (1989).
    [4] David Carter, “Confocal Microscopy.” Current Protocols Essential Laboratory Techniques. 7(1), (2008).
    [5] Cláudia C. B. O. Mota, Bruna A. Guerra, Brena S. A. Machado, Adolfo J. Cabral, Anderson S. L. Gomes, “Optical coherence tomography applied to the evaluation of wear of composite resin for posterior teeth.” SPIE. 9531, (2015).
    [6] Sarita Arteaga, “Demineralization and Remineralization: The Battle to keep teeth strong and healthy.” Dentistry., (2006).
    [7] Benin Dikmen, “Icdas II criteria (international caries detection and assessment system).” J Istanb Univ Fac Dent. 49(3), 63–72, (2015).
    [8] Pretty IA., ” Caries detection and diagnosis: novel technologies.” J Dent. 34(10), 727-39, (2009).
    [9] Ricketts DN, Kidd EA, Liepins PJ, Wilson RF., ” Histological validation of electrical resistance measurements in the diagnosis of occlusal caries.” Caries Res. 30(2), 148-55, (1996).
    [10] Huang, D., Swanson, E. A., Lin, C. P., Schuman J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K., Puliafito, C. A., Fujimoto, J. G., “Optical coherence tomography. ” Science. 254(5035), 1178–1181, (1991).
    [11] Pierce, M. C., Strasswimmer, J., Park, B. H., Cense, B., Boer, J. F., “Advances in Optical Coherence Tomography Imaging for Dermatology. ” J. Invest. Dermatol. 123(3), 458–463, (2004).
    [12] Kuo, W. C., Hsiung, M. W., Shyu, J. J., Chou, N. K., Yang, P. N., “Assessment of arterial characteristics in human atherosclerosis by extracting optical properties from polarization-sensitive optical coherence tomography. ” Opt. Express. 16(11), 8117–8125, (2008).
    [13] Yang, Y., Whiteman, S., Gey van Pittius, D., He, Y., Wang, R. K., Spiteri, M. A., “Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections. ” Phys. Med. Biol. 49(7), 1247–1255, (2004).
    [14] Evans, J. A., Poneros, J. M., Bouma, B. E., Bressner, J., Halpern, E. F., Shishkov, M., Lauwers, G. Y., Mino-Kenudson, M., Nidhioka, N. S., Tearney, G. J., “Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett’s esophagus. ” Clin. Gastroenterol. Hepatol. 4(1), 38–43, (2006).
    [15] Mota, C. C. B. O., Gueiros, L. A., Maia, A. M. A., Silva, A. R. S., Gomes, A. S. L., Alves, F. A., Leão, J. C., Freitas, A. Z., Góes, M., Lopes, M. A., “Optical coherence tomography as an auxiliary tool for the screening of radiation-related caries. ” Photomed. Las. Surg. 31(7), 301–306, (2013).
    [16] Mota, C. C. B. O., Fernandes, L. O., Cimões, R., Gomes, A. S. L., “Non-Invasive Periodontal Probing Through Fourier Domain Optical Coherence Tomography. ” J. Periodontol. 16, 1–10 ,(2015).
    [17] Maia, A. M. A., Fonseca, D. D. D., Kyotoku, B. B. C., Gomes, A. S. L., “Characterization of enamel in primary teeth by optical coherence tomography for assessment of dental caries. ” Int. J. Paediatr. Dent. 20(2), 158–164, (2010).
    [18] Editors, “Teeth” Biology Dictionary., (2017).
    [19] “Tooth structure.” Tooth Club.
    [20] Karen Quinto, “The mechanics of fluoride in the fluoridation of water.” (2011).
    [21] Ensanya Ali Abou Neel, Anas Aljabo,3 Adam Strange, Salwa Ibrahim, Melanie Coathup, Anne M Young, Laurent Bozec, Vivek Mudera, “Demineralization–remineralization dynamics in teeth and bone.” Int J Nanomedicine. 11, 4743–4763 (2016).
    [22] Michael G. Buonnocore, D.M.D., M.S., “A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces.” J Dent Res. 34(6), 849-53 (1955).
    [23] Fercher AF, Mengedoht K, Werner W, “Eye-length measurement by interferometry with partially coherent light.” Opt Lett. 13(3), 186–188 (1988).
    [24] Mandurah MM, Sadr A, Shimada Y, Kitasako Y, Nakashima S, Bakhsh TA, Tagami J, Sumi Y, “Monitoring remineralization of enamel subsurface lesions by optical coherence tomography.” J Biomed Opt. 18(4), (2013).
    [25] Narendra Parehar, Manish Pilania, Khanda Falsa, Jalori Gate, Jodhpur. “SEM evaluation of effect of 37% phosphoric acid gel, 24% edta gel and 10% maleic acid gel on the enamel and dentin for 15 and 60 seconds: an in‐vitro study.“ International Dental Journal of Students' Research. 1(2), 29–41 (2012).
    [26] Goes MF, Sinhoreti MA, Consani S, Silva MA, “Morphological effect of the type, concentration and etching time of acid solutions on enamel and dentin surfaces.” Braz Dent J. 9(1), 3–10 (1998).
    [27] James Fujimoto, Eric Swanson, “The development, commercialization, and impact of optical coherence tomography.” Invest Ophthalmol Vis Sci. 57(9), (2016).
    [28] David Huang, Eric A. Swanson, Charles P. Lin, Joel S. Schuman, William G. Stinson, Warren Chang, Michael R. Hee, Thomas Flotte, Kenton Gregory, Carmen A. Puliafito, and James G. Fujimoto, “Optical coherence tomography” Science. 254(5035), 1178–1181 (1991).
    [29] James G Fujimoto, Costas Pitris, Stephen A Boppart, Mark E Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy.” Neoplasia. 2(1–2), 9–25 (2000).
    [30] Dan P. Popescu, Lin-P’ing Choo-Smith, Costel Flueraru, Youxin Mao, Shoude Chang, John Disano, Sherif Sherif, Michael G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications.” Biophys Rev. 3(3), (2011).
    [31] J. A. Izatt, M. A. Choma, “Theory of optical coherence tomography.” Springer, Berlin, Heidelberg, 47-72, (2008).
    [32] R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography.” OSA publishing. 11(8), 889-894, (2003).
    [33] Adolf F. Fercher, Peter E. Andersen, “Optical Coherence Tomography.” In Encyclopedia of Analytical Chemistry. (2017).
    [34] MedUni Wien, “Morphological OCT”
    [35] Zahid Yaqoob, Jigang Wu, Changhuei Yang, “Spectral domain optical coherence tomography: a better OCT imaging strategy.” BioTechniques. (2005).
    [36] Johannes F. de Boer, Rainer Leitgeb, Maciej Wojtkowski, “Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT. ” Biomed Opt Express. 8(7), 3248–3280 (2017).
    [37] Leo Renyuan Zhang, “Fiber based spectral domain optical coherence tomography: mechanism and clinical applications.”
    [38] Murtaza Ali, Renuka Parlapalli, “Signal processing overview of optical coherence
    tomography systems for medical imaging.” (2010).
    [39] Shoji Kishi, “Impact of swept source optical coherence tomography on ophthalmology.” Science Direct. 6(2), 58-68, (2016).
    [40] A F Fercher, W Drexler, C K Hitzenberger, T Lasser, “Optical coherence tomography—principles and applications.” Institute of physics publishing. 66, 239–303 (2003).
    [41] Prexion, “Wave-length of light.”
    [42] Y. Iijima, O. Takagi, J. Ruben, J. Arends,” In vitro remineralization of in vivo and in vitro formed enamel lesions.” Caries Research. 33, 206-213 (1999).
    [43] Michael G. Buonnocore, D.M.D., M.S., “A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces.” J Dent Res. 34(6), 849-53 (1955).
    [44] Jorge Perdigão, Edward J. Swift, Jr., Ricardo Walter,” Fundamental concepts of enamel and dentin adhesion.” Elsevier Health Sciences. 6, (2014).
    [45] Susan Swapp, “Scanning electron microscopy (SEM).” University of Wyoming.
    [46] “How an SEM works.” Nanoscience Instruments.
    [47] “SEM & Imaging : the applications and practical uses of scanning electron microscopes.” ATA Scientific Pty Ltd. (2017).
    [48] Unakar N.J., Tsui J.Y., Harding C.V., “Scanning Electron Microscopy.” Ophthalmic Research. 13, 20-35, (1981).
    [49] 游尚叡,「以三維偏振敏感OCT系統量測牙齒去礦化之研究」,國立交通大學光電工程學系碩士論文,(2016)。
    [50] 曾柏文,「不同磷酸濃度酸蝕牙釉質後對其表面再礦化之顯微結構的影響」,台北醫學大學口腔醫學院牙醫學系碩士論文,(2007)。
    [51] Jorge Perdigão, Paul Lambrechts, Bart Van Meerbeek, Ângelo R. Tomé, Guido Vanherle, Augusto B. Lopes, “Morphological field emission-SEM study of the effect of six phosphoric acid etching agents on human dentin.” Dent Mater. 12(4), 262-271 (1996).
    [52] Rodrigo S. Lacruz, Yohei Nakayama, James Holcroft, Van Nguyen, Eszter Somogyi-Ganss, Malcolm L. Snead, Shane N. White, Michael L. Paine, Bernhard Ganss, “Targeted overexpression of amelotin disrupts the microstructure of dental enamel.” PLoS One. 7(4), (2012).

    無法下載圖示 本全文未授權公開
    QR CODE