研究生: |
謝旻儒 Hsieh, Min-Ru |
---|---|
論文名稱: |
未來長期氣候變遷對西北太平洋超級颱風個案降水潛在影響之模擬研究 The Simulation Studies of Potential Influence of Future Long-term Climate Change on Super Typhoon Precipitation Cases in Western North Pacific |
指導教授: |
王重傑
Wang, Chung-Chieh |
口試委員: |
王重傑
Wang, Chung-Chieh 陳正達 Chen, Cheng-Ta 楊明仁 Yang, Ming-Jen |
口試日期: | 2023/06/02 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 156 |
中文關鍵詞: | 氣候變遷 、超級颱風 、水收支 、降水 |
英文關鍵詞: | climate change, precipitation, super typhoon, water budget |
研究方法: | 次級資料分析 、 個案研究法 、 比較研究 、 內容分析法 |
DOI URL: | http://doi.org/10.6345/NTNU202300625 |
論文種類: | 學術論文 |
相關次數: | 點閱:395 下載:21 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣候變遷所衍生的極端天氣現象是人類在未來須面對的環境議題之一,近年來逐漸在國際間獲得重視,而對於未來的災害推估也是學界近期正努力鑽研的一大領域。對於西北太平洋區域而言,颱風的肆虐往往對陸地造成嚴重災損,除風力驚人,其挾帶的劇烈降水更具有破壞力,尤其薩菲爾·辛普森等級C4或C5的強颱更是不可言喻。為探討未來暖化下強烈颱風的降水變化,本研究以此為動機,自Thean (2021) 選取雲解析風暴模式CReSS模擬之梅姬(2010)、海燕(2013)、莫蘭蒂(2016)三個典型超級颱風個案及未來21世紀末RCP 4.5及RCP 8.5情境的模擬實驗結果,加以分析相關降水參數及環流結構變異,另使用水收支做更進一步的定性與定量診斷作為研究主軸。
研究結果指出,三個案在未來情境模擬下,背景水氣增加與垂直次環流上升運動的加強導致颱風劇烈降水皆有顯著成長,在0~400公里半徑範圍內,經全模擬時間平均,梅姬颱風分別在RCP 4.5及RCP 8.5情境下增加6.04%、12.85%,海燕颱風分別增加12.85%、29.6%,莫蘭蒂分別增加4.63%、6.3%;若縮小至0~200公里半徑,梅姬颱風於兩環境下分別成長11%、19.99%,海燕颱風分別增加10.42%、19.43%,莫蘭蒂颱風則成長5.92%、19.58%。各類水象粒子的軸對稱垂直剖面分布也呼應到降水,水氣、降水粒子在內核有顯著增長,而冰相粒子因溶解層提高,生成高度會些許增加且有總含量減少的可能性。
在水收支分析上,考慮不同個案的環流半徑與計算精確度,三個案使用不同半徑與時長進行計算,不過皆有一致的結果:在暖化情境下,密度輻合增強,密度平流加強,粒子絕對溼度時變率亦增加,而整體水收支以水氣的密度輻合為最大主導項。本研究另有分析中低層0~5.5公里之可降水量與水平輻合積分,儘管發現三個案於不同暖化情境下誘發降水的偏好歸因不同,一部分實驗的降水差異來自水平輻合的增大,另一部分則來自可降水量的增加,不過兩機制皆會對未來超級颱風環流降水增加的可預期性是不變的。
The extreme weather under climate change is one of the environmental problems that the humanity will face in the future. Related researches of estimating future disasters are still ongoing recently. In western North Pacific (WNP), typhoons often cause huge damage. In addition to the strong wind, its torrential precipitation is even more destructive, especially for category 4 and 5 super-typhoons. To explore the changes in precipitation caused by intense typhoons under future warming scenarios, this study selected three super-typhoon cases from Thean (2021): Megi (2010), Haiyan (2013), and Meranti (2016). This study uses cloud-resolving storm simulator (CReSS) to reproduce these cases and simulate their precipitation at the end of the 21st century under RCP 4.5 and RCP 8.5 warming scenarios combined with Coupled Model Intercomparison Project Phase 5 (CMIP5) data. Following analysis in this research includes the variations of relevant parameters, circulation structures, and water budget.
The results indicate the increase of background moisture and the strengthening of upward motion in the typhoon circulation cause significant increase in precipitation in future scenarios. In radii of 0-400 km, the growth of Typhoon Megi precipitation under RCP 4.5 and RCP 8.5 is 6.04% and 12.85%, respectively; Typhoon Haiyan grows by 12.85% and 29.6%; Typhoon Meranti also increases by 4.63% and 6.3%. For the inner core of 0-200 km, rainfall of Megi grows by 11% and 19.99% under the two scenarios; Haiyan also grows by 10.42% and 19.43%, and precipitation of Meranti has 5.92% and 19.58% increases, respectively. The mean radial profiles of water species also reflect the rainfall distributions: the water vapor and precipitation particles significantly increase in the inner core, and due to the rising of melting layer, there is a possibility that the generation height of ice-phase particles will increase and the quantities will slightly decrease.
As for the water budget, considering different circulation radius and computational accuracy, these three cases were calculated with different radii and durations, but all the results are consistent. In the warming future, total water transport would increase, including the enhancement of flux convergence (i.e. summation of density convergence and density advection), and absolute humidity change rate; meanwhile, the domination term of water budget is water vapor density convergence. In addition, by calculating precipitable water (PW) and integrated horizontal convergence (IHC) within the height of 0-5.5 km, this study shows the attribution inducing precipitation in different experiments is different: rainfall variation in some experiments come from the changes in IHC, and some of which are caused by PW. Nevertheless, the fact that the increase of future super typhoon rainfall by the interaction between these two mechanisms remains unchanged.
李昭億. (2019). 海燕颱風 (2013) 之雲解析差時系集預報應用研究. 碩士論文, 國立臺灣師範大學, 臺灣博碩士論文知識加值系統, https://hdl.handle.net/11296/4fx4u5
蘇世顥, 陳郁涵, 楊憶婷, 徐理寰, & 郭鴻基. (2017). 氣候變遷下台灣颱風豪雨之變化與機制探討. 大氣科學, 45(4), 305-331.
Bacmeister, J.T., Reed, K.A., Hannay, C. et al. Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Climatic Change 146, 547–560 (2018). https://doi.org/10.1007/s10584-016-1750-x
Barber, G. M., 1988: Elementary Statistics for Geographers. Guilford Press, 513 pp.
Camargo, S. J. (2013). Global and Regional Aspects of Tropical Cyclone Activity in the CMIP5 Models, Journal of Climate, 26(24), 9880-9902. Retrieved Nov 5, 2022, from https://journals.ametsoc.org/view/journals/clim/26/24/jcli-d-12-00549.1.xml
Chan, K.T.F., Chan, J.C.L. Sensitivity of the simulation of tropical cyclone size to microphysics schemes. Adv. Atmos. Sci. 33, 1024–1035 (2016). https://doi.org/10.1007/s00376-016-5183-2
Chen, C.-Y., 2019: A Study on the Impacts of Future Long-Term Climate Change on the Rainfall of Northward-moving Typhoon cases in Taiwan. M.S. thesis, Department of Earth Sciences, National Taiwan Normal University, 185 pp., https://doi.org/10.6345/NTNU201900872.
Cotton, W. R., Tripoli, G. J., Rauber, R. M., & Mulvihill, E. A. (1986). Numerical Simulation of the Effects of Varying Ice Crystal Nucleation Rates and Aggregation Processes on Orographic Snowfall. Journal of Climate and Applied Meteorology, 25(11), 1658–1680. http://www.jstor.org/stable/26183490
Fovell, R. G., Bu, Y. P., Corbosiero, K. L., Tung, W., Cao, Y., Kuo, H., Hsu, L., & Su, H. (2016). Influence of Cloud Microphysics and Radiation on Tropical Cyclone Structure and Motion, Meteorological Monographs, 56, 11.1-11.27. doi: https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0006.1
Gao, S., Zhai, S., Chen, B., & Li, T. (2017). Water Budget and Intensity Change of Tropical Cyclones over the Western North Pacific, Monthly Weather Review, 145(8), 3009-3023. Retrieved Jul 31, 2021, from https://journals.ametsoc.org/view/journals/mwre/145/8/mwr-d-17-0033.1.xml
Guzman, O., Jiang, H. Global increase in tropical cyclone rain rate. Nat Commun 12, 5344 (2021). https://doi.org/10.1038/s41467-021-25685-2
Hill, K. A., & Lackmann, G. M. (2011). The Impact of Future Climate Change on TC Intensity and Structure: A Downscaling Approach, Journal of Climate, 24(17), 4644-4661. doi: https://doi.org/10.1175/2011JCLI3761.1
Hirokazu Endo, Akio Kitoh, Ryo Mizuta, Future changes in extreme precipitation and their association with tropical cyclone activity over the western North Pacific and East Asia in 20 km AGCM simulations, SOLA, Article ID 2022-010, Advance online publication March 01, 2022, Online ISSN 1349-6476, https://doi.org/10.2151/sola.2022-010, https://www.jstage.jst.go.jp/article/sola/advpub/0/advpub_2022-010/_article/-char/en
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi:10.1017/CBO9781107415324.
IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 616 pp., doi:10.1017/9781009157940.
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, doi:10.1017/9781009157896.
Kanada, S., & Wada, A. (2017). Different Climatological Characteristics, Inner-Core Structures, and Intensification Processes of Simulated Intense Tropical Cyclones between 20-km Global and 5-km Regional Models, Journal of Climate, 30(5), 1583-1603. Retrieved Oct 7, 2022, from https://journals.ametsoc.org/view/journals/clim/30/5/jcli-d-16-0093.1.xml
Kanada, S., Takemi, T., Kato, M., Yamasaki, S., Fudeyasu, H., Tsuboki, K., Arakawa, O., & Takayabu, I. (2017). A Multimodel Intercomparison of an Intense Typhoon in Future, Warmer Climates by Four 5-km-Mesh Models, Journal of Climate, 30(15), 6017-6036. Retrieved Jul 9, 2021, from https://journals.ametsoc.org/view/journals/clim/30/15/jcli-d-16-0715.1.xml
Knutson, T., McBride, J., Chan, J. et al. Tropical cyclones and climate change. Nature Geosci 3, 157–163 (2010). https://doi.org/10.1038/ngeo779
Knutson, T. R., Sirutis, J. J., Zhao, M., Tuleya, R. E., Bender, M., Vecchi, G. A., Villarini, G., & Chavas, D. (2015). Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios, Journal of Climate, 28(18), 7203-7224. Retrieved Apr 24, 2021, from https://journals.ametsoc.org/view/journals/clim/28/18/jcli-d-15-0129.1.xml
Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., & Wu, L. (2020). Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming, Bulletin of the American Meteorological Society, 101(3), E303-E322. Retrieved Nov 5, 2022, from https://journals.ametsoc.org/view/journals/bams/101/3/bams-d-18-0194.1.xml
Lee, H., Jin, C., Cha, D., Lee, M., Lee, D., Suh, M., Hong, S., & Kang, H. (2019). Future Change in Tropical Cyclone Activity over the Western North Pacific in CORDEX-East Asia Multi-RCMs Forced by HadGEM2-AO, Journal of Climate, 32(16), 5053-5067. doi: https://doi.org/10.1175/JCLI-D-18-0575.1
Li, M.-H., 2018: An Assessment on the Impacts of Future Long-term Climate Change on the Rainfall of Westward-moving and Land falling Typhoon cases in Taiwan. M.S. thesis, Department of Earth Sciences, National Taiwan Normal University, 174 pp., http://doi.org/10.6345/THE.NTNU.DES.013.2018.B07.
Li, M., Ping, F., Tang, X., & Yang, S. (2019). Effects of microphysical processes on the rapid intensification of Super-Typhoon Meranti. Atmospheric Research, 219, 77-94. https://doi.org/10.1016/j.atmosres.2018.12.031
Lin, Y., Farley, R. D., & Orville, H. D. (1983). Bulk Parameterization of the Snow Field in a Cloud Model, Journal of Applied Meteorology and Climatology, 22(6), 1065-1092. doi: https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
Lord, S. J., Willoughby, H. E., & Piotrowicz, J. M. (1984). Role of a Parameterized Ice-Phase Microphysics in an Axisymmetric, Nonhydrostatic Tropical Cyclone Model, Journal of Atmospheric Sciences, 41(19), 2836-2848. doi: https://doi.org/10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2
Meehl, G. A., Zwiers, F., Evans, J., Knutson, T., Mearns, L., & Whetton, P. (2000). Trends in Extreme Weather and Climate Events: Issues Related to Modeling Extremes in Projections of Future Climate Change, Bulletin of the American Meteorological Society, 81(3), 427-436. doi: https://doi.org/10.1175/1520-0477(2000)081<0427:TIEWAC>2.3.CO;2
Murakami, S. (1990). Numerical simulation of turbulent flowfield around cubic model current status and applications of k− ϵ model and LES. Journal of Wind Engineering and Industrial Aerodynamics, 33(1-2), 139-152.doi: https://doi.org/10.1016/0167-6105(90)90030-G
Murakami, M., Clark, T. L., & Hall, W. D. (1994). Numerical Simulations of Convective Snow Clouds over the Sea of Japan Two-Dimensional Simulations of Mixed Layer Development and Convective Snow Cloud Formation. Journal of the Meteorological Society of Japan. Ser. II, 72(1), 43-62. doi: https://doi.org/10.2151/jmsj1965.72.1_43
Murakami, H., Wang, Y., Yoshimura, H., Mizuta, R., Sugi, M., Shindo, E., Adachi, Y., Yukimoto, S., Hosaka, M., Kusunoki, S., Ose, T., & Kitoh, A. (2012). Future Changes in Tropical Cyclone Activity Projected by the New High-Resolution MRI-AGCM, Journal of Climate, 25(9), 3237-3260. doi: https://doi.org/10.1175/JCLI-D-11-00415.1
Nakamura, R., Shibayama, T., Esteban, M. et al. Future typhoon and storm surges under different global warming scenarios: case study of typhoon Haiyan (2013). Nat Hazards 82, 1645–1681 (2016). https://doi.org/10.1007/s11069-016-2259-3
Roberts, M.J., Camp, J., Seddon, J., Vidale, P.L., Hodges, K., Vannière, B., Mecking, J., Haarsma, R., Bellucci, A., Scoccimarro, E., Caron, L.-P., Chauvin, F., Terray, L., Valcke, S., Moine, M.-P., Putrasahan, D., Roberts, C.D., Senan, R., Zarzycki, C., Ullrich, P., Yamada, Y., Mizuta, R., Kodama, C., Fu, D., Zhang, Q., Danabasoglu, G., Rosenbloom, N., Wang, H. and Wu, L. (2020), Projected Future Changes in Tropical Cyclones Using the CMIP6 HighResMIP Multimodel Ensemble. Geophys. Res. Lett., 47: e2020GL088662. https://doi.org/10.1029/2020GL088662
Thean, Y.-T., 2021: A modelling study of possible impacts of Future Climate Change on Strong Typhoons in the Western North Pacific. M.S. thesis, Department of Earth Sciences, National Taiwan Normal University, 179 pp.
Saito, K., & Ikawa, M. (1991). A numerical study of the local downslope wind" Yamaji-kaze" in Japan. Journal of the Meteorological Society of Japan. Ser. II, 69(1), 31-56. doi: https://doi.org/10.2151/jmsj1965.69.1_31
Trenberth, K. E., & Guillemot, C. J. (1995). Evaluation of the Global Atmospheric Moisture Budget as Seen from Analyses, Journal of Climate, 8(9), 2255-2272. Retrieved Nov 6, 2022, from https://journals.ametsoc.org/view/journals/clim/8/9/1520-0442_1995_008_2255_eotgam_2_0_co_2.xml
Tsou, C. H., P. Y. Huang, C. Y. Tu, C. T. Chen, T. P. Tzeng, and C. T. Cheng, 2016: Present simulation and future typhoon activity projection over western North Pacific and Taiwan/East Coast of China in 20-km HiRAM climate model. Terr. Atmos. Ocean. Sci., 27, 687-703, doi: 10.3319/TAO.2016.06.13.04
Tsuboki, K., and A. Sakakibara, 2007: Numerical Prediction of High-Impact Weather Systems — The Textbook for Seventeenth IHP Training Course in 2007. HyARC, Nagoya University, and UNESCO, 273 pp., https://cicr.isee.nagoya-u.ac.jp/ihp/textbook/ihp_textbook.html.
Tsuboki, K., M. K. Yoshioka, T. Shinoda, M. Kato, S. Kanada, and A. Kitoh (2015), Future increase of supertyphoon intensity associated with climate change, Geophys. Res. Lett., 42, 646–652, doi:10.1002/2014GL061793.
Wang, C., Lin, B., Chen, C., & Lo, S. (2015). Quantifying the Effects of Long-Term Climate Change on Tropical Cyclone Rainfall Using a Cloud-Resolving Model: Examples of Two Landfall Typhoons in Taiwan, Journal of Climate, 28(1), 66-85. Retrieved Oct 7, 2022, from https://journals.ametsoc.org/view/journals/clim/28/1/jcli-d-14-00044.1.xml
Wang, C-C, Tseng, L-S, Huang, C-C, et al. How much of Typhoon Morakot's extreme rainfall is attributable to anthropogenic climate change? Int J Climatol. 2019; 39: 3454– 3464. https://doi.org/10.1002/joc.6030