簡易檢索 / 詳目顯示

研究生: 伍宏麟
論文名稱: 教學策略與學習工具對程式語言初學者學習成效及學習態度之影響
指導教授: 陳明溥
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 111
中文關鍵詞: 程式語言教學教學策略機器人學習態度學習成效
論文種類: 學術論文
相關次數: 點閱:194下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討不同的教學策略(問題導向策略、程序導向策略)及程式語言學習工具(機器人)融入教學活動,對高中學生學習程式語言的學習表現、學習動機及學習態度之影響,以提供高中電腦教師在程式語言教學之參考。希望透過教師的教學策略、不同學習工具(機器人)的使用,可促進學習者對程式語言的理解與應用、提高學習者學習程式語言的學習動機,並對程式語言學習有正向的學習態度。
    本研究之對象為高中學習程式語言初學者,選取新北市某高中一年級八個班級的學生進行教學實驗。各班學生在校皆未修習程式設計相關之課程,也未使用過機器人等程式設計之工具。有效樣本為345人,年齡介於15到16歲之間。其中男生233人(67.5%),女生115人(32.8%)。每位同學在進行教學實驗前均已修習過程式語言基礎課程,但尚未學習到「廻圈結構」單元。實驗為期四週,每週進行50分鐘之教學實驗,教師為研究者本人。學習成效是探討學習者之學習的表現情形,分為「整體表現」、「知識理解」與「知識應用」三個面向;學習態度主要探討學習者在實驗教學活動之後在「學習動機」、「學習滿意度」、「學習工具對學習幫助度」、「學習方式對學習幫助度」等面向。
    研究結果發現:(1)問題導向的教學策略有助於學習者程式語言的知識理解表現;(2)使用機器人學習工具有助於學習者的學習表現;(3)問題導向教學策略與利用機器人學習工具對學習者的學習動機有正向的影響;(4)問題導向教學策略與利用機器人學習工具對學習者的學習迴圈結構的學習滿意度、學習工具幫助度、學習方式滿意度產生正向之學習態度表現。

    The purpose of this study was to investigate the effects of instructional strategy and learning tool on senior high students’ learning computer programming performance and attitudes. Two types of instructional strategy, the problem-solving instructional strategy, and procedural-learning instructional strategy, and robot learning tool were employed in this study. The researcher expected that using different types of instructional strategy and integrating the robot learning tool into programming language course train the learners to learn more effectively, and promote their learning performance and attitudes toward learning.
    There were 345 senior high students participated in 5-weeks programming learning activities. Students were divided into four groups: the problem-solving-with-robot group, the problem-solving-without-robot group, the procedural-with-robot group and the procedural-without-robot group. The analysis of learners' learning performance included overall conceptions, understanding of programming concepts, and application of programming concepts. The analysis of learners' learning attitudes included learning motivation (control of learning, self efficiency, test anxiety), learning satisfaction, advantages of learning tools, and advantages of different learning ways.
    The results revealed that: (a) the learners in problem-solving instructional strategy performed significantly better in understanding of programming concepts; (b) learners using robot learning tool outperformed those without using robot learning tool in programming performance; (c) learners in problem-solving instructional strategy integrated with robot learning tool had more positive learning motivation attitude; (d) learners in problem-solving instructional strategy integrated with robot learning tool promoted learners’ attitudes toward learning satisfaction, advantages of learning tool, and advantages of different learning ways.

    目錄 ix 表目錄 xi 圖目錄 xii 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 4 第三節 研究範圍與限制 6 第四節 重要名詞釋義 8 第二章 文獻探討 10 第一節 程式語言教學 10 第二節 問題解決與教學策略 16 第三節 學習動機 20 第三章 研究方法 24 第一節 研究對象 24 第二節 研究設計 26 第三節 研究工具 28 第四節 研究程序 46 第五節 資料分析 51 第四章 結果與討論 57 第一節 廻圈結構學習成效分析 58 第二節 學習動機分析 66 第三節 學習態度分析 72 第五章 結論與建議 80 第一節 結論 80 第二節 建議 84 參考文獻 86 附錄一 VB程式語言先備知識測驗試題 95 附錄二 學習動機問卷 98 附錄三 問題導向「廻圈結構」課程學習態度問卷 100 附錄四 程序導向「廻圈結構」課程學習態度問卷 102 附錄五 機器人學習工具「廻圈結構」成就測驗試題 104 附錄六 一般學習工具「廻圈結構」成就測驗試題 108

    吳正已、林凱胤(1997)。問題解決導向的程式語言教學。資訊教育雜誌創刊 十年特刊,75-83。
    林俊閎、劉旨峰、陳國棟(2009年11月)。台灣機器人教育發展之研究分析。第二屆Web2.0與教育國際研討會,桃園,國立中央大學。
    教育部(2003)。國民中小學九年一貫課程綱要。取自:http://teach.eje.edu.tw/9CC/index_new.php.
    教育部(2008)。普通高級中學必修科目「資訊科技概論」課程綱要。取自:www.edu.tw/files/site_content/B0035/資訊科技概論-必修.pdf
    曾義智(2007)。應用機器人於程式設計教學-實體機器人與模擬軟體使用成效比較。未出版碩士論文,國立台灣師範大學資訊教育研究所,台北市。
    陳明溥(2003)。網際網路與問題解決學習。台大教與學期刊電子報,第20期,2003年12月10日。
    陳明溥(2007)。程式語言課程之教學模式與學習工具對初學者學習成效與學習態度之影響。師大學報,52,1-21。
    張春興(1996)。教育心理學─三化取向的理論與實踐。台北:東華書局。
    劉洲(2005)。應用LEGO Mindstorms在高中程式設計教學的成效探討。未出版碩士論文,國立台灣師範大學資訊教育研究所,台北市。
    簡立仁、楊靜怡、楊宜庭(2008)。科技教育的新方向-於中等學校電腦科學課程內整合機器人學程。科學教育月刊,314,39-47。
    謝亞錚(2009)。機器人輔助程式設計教學之學習成效與學生心智模型探討。未出版碩士論文,國立台灣師範大學資訊教育研究所,台北市。

    Anderson, J. R. (1985). Cognitive psychology and its implications (2nd ed.). New York: Freeman.
    Ames, C., & Archer, J. (1988). Achievement goals in the classroom: Students’ learning strategies and motivation processes. Journal of Educational Psychology, 80(3), 260-267.
    Ames, C. (1992a). Classroom: Goals, structure, and students' motivation. Journal of Educational Psychology, 84, 261-267.
    Ames, C. (1992b). Achievement goals and classroom motivation climate. In D. H. Schunk & J. L. Meece (Eds.), Student perceptions in the classroom (pp. 327-348). Hillsdale, NJ: Lawrence Erlbaum.
    Association for Computing Machinery (ACM) (2003). A Model Curriculum for K-12 Computer Science. Retrieved May 20, 2010, from www.acm.org/education/education/curric_vols/k12final1022.pdf
    Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215.
    Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice Hall.
    Bandura, A. (2001). Social cognitive theory of mass communication. Media Psychology, 3(3), 265-299.
    Barnes, D. J. (2002). Teaching introductory Java through LEGO MINDSTORMS models. ACM SIGCSE Bulletin, 34(1), 147-151.
    Bransford, J. D., & Stein, B. S. (1993). The IDEAL problem solver: A guide for iimproving thinking learning and creativity (2nd ed.). New York: W. H. Freeman.
    Brusilovsky, P., & Spring, M. (2004). Adaptive, engaging, and explanatory visualization in a C programming course. Proceedings of the 2004 World Conference on Educational Media, Hypermedia, and Telecommunications, 1264-1271.
    Budd, T. (2006). An active learning approach to teaching the data structures course. In Proceedings of the 37th SIGCSE technical symposium on computer science education (pp. 143–147), Houston, TX, USA.
    Cox, K. R. & Clark, D. (1994). Computing models that empower students. Computer education, 24(4), 277-284.
    Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum.
    Deci, E. L., Vallerand, R. J., Pelletier, L. G., & Ryan, R. M. (1991). Motivation and education: The self-determination perspective. Educational Psychologist, 26(4), 325-346.
    Deci, E. L., & Ryan, R. M. (2000). The support of autonomy and the control of behavior. In E. T. Higgins & A. W. Kruglansld (Eds.), Motivational science: SxiaI and peisonality pespectis. (pp.128-145). Philadelphia: Psychology Press.
    Deek, F. P., Kimmel, H. & McHugh, J. A. (1998). Pedagogical changes in the delivery of the first course in computer science: Problem solving then programming. Journal of Engineering Education, 87(3), 313-320.
    Deek, F. P., Turoff, M. & McHugh, J. A. (1999). A common model for problem solving and program development. IEEE Transactions on Education, 42(4), 331-336.
    de Kereki, I. F. (2008). Scratch: Applications in Computer Science 1. 38th ASEE/IEEE Frontiers in Education Conference, Saratoga Springs, NY, October 22-25, 2008.
    Dewey, J.(1910). How we think. Boston: Heath.
    Du Boulay, B. (1989). Some difficulties of learning to program. In E. Soloway & J. C. Spohrer(Eds.), (pp. 283-299). Hillsdale, NJ: Lawrence Erlbaum.
    Dweck, C. S. (1986). Motivational processes affecting learning. American Psychology, 41, 1040-1048.
    D′Zurilla, T. J., & Goldfried, M.R. (1971). Problem solving and behavior modification. Journal of Abnormal Psychology, 78(1), 107-126.
    Eckerdal, A. (2009). Novice programming students’ learning of concepts and practise. Dissertation presented at mathematics and computer science, department of information technology, Upsalla University, Sweeden, March 6, 2009.
    Ellinger, H. (2003). A nature sense of algorithm: Children should learn computer programming as a basic skill. Retrived May 13, 2011, from http://hunter.ellinger.org/education/programmingforchildren.htm
    Fagin, B., & Merkle, L. (2003). Measuring the effectiveness of robots in teaching computer science. ACM SIGCSE Bullentin, 35(1), 307-311.
    Fernaeus, Y., Kindborg, M., & Scholz, R. (2006). Programming and tools: Rethinking children's programming with contextual signs. Conference on Interaction Design and Children IDC '06, June 7-9, Tampere, Finland. ACM Press.
    Flowers, T. R., & Gossett, K. A. (2002). Teaching problem solving, computing, and information technology with robots. Journal of Computing Science in Colleges, 17(6), 45-55.
    Forte, A., & Guzdial, M. (2005). Motivation and nonmajors in computer science: identifying discrete audiences for introductory courses. IEEE Transactions on Education, 48(2), 248–253.
    Freund, S. N., & Roberts, E. S. (1996). THETIS: An ANSI C programming environment designed for introductory use. Special Interest Group on Computer Science Education, 28(1), 300-304.
    Gagné, R. M. (1985). The Conditions of learning and theory of instruction. Orlando, Florida: Holt, Rinehart and Winston Inc.
    Glynn, S. M., Aultman, L. P. & Owens, A. M. (2005). Motivation to learn in general education programs. Journal of General Education, 54(2), 150-170.
    Govender, I. & Grayson, D. (2006). Learning to program and learning to teach programming: A closer look. Proceedings of the ED-MEDIA 2006-World Conference on Educational Multimedia, Hypermedia & Telecommunications, 1687-1693.
    Govender, I., & Grayson, G. J. (2008). Pre-service and in-service teachers experiences of learning to program in an object-oriented language. Computers & Education, 51, 874–885.
    Guzdial, M. (2004). Programming environments for novices. S. Fincher, & M. Petre (Eds.), Computer Science Education Research. Taylor & Francis Group, London, UK.
    Hacker M., & Barden, A. R. (1988). Living with technology. Albany New York:Delmar.
    Hadjerrouit, S. (2008). Towards a blended learning model for teaching and learning computer programming: A case study. Informatics in Education, 7(2), 181-210.
    Kahney, Hank. (1986). Problem solving - A cognitive approach. Milton Keynes: Open University Press.
    Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming environments and languages for novice programmers. ACM Computing Surveys, 37(2), 83-137.
    Klassner, F. (2002). A case study of LEGO MINDSTORMS’ suitability for artificial intelligence and robotics courses at the college level, In Proceedings of the 33rd SIGCSE Technical Symposium on Computer Science Education (pp. 8–12). New York: ACM Press.
    Kordaki, M. (2010). A drawing and multi-representational computer environment for beginners’ learning of programming using C: Design and pilot formative evaluation. Computers & Education, 54(1), 69-87.
    Lahtinen, E., Ala-Mutka, K., & Järvinen, H. (2005). A study of the difficulties of novice programmers. ACM SIGCSE Bulletin, 37(3), 14-18.
    Lawhead, P. B., Duncan, M. E., Bland, C. G., Goldweber, M., Schep, M., & Barnes, D. J. (2003). A road map for teaching introductory programming using LEGO Mindstorms Robots. ACM SIGCSE Bullentin, 35(2), 191-201.
    McKeachie, W. J. (2002). MeKeachie's teaching tips: Strategies, research, and theory for college and university teachers (11th ed.). Massachusetts: Houghton Mifflin Company.
    McWhorter, W. I., & O'Connor, B. C. (2009). Do LEGO Mindstorms motivate students in CS1? Proceedings of the 40th ACM Technical Symposium on Computer Science Education (SIGCSE’09), 438-442. Chattanooga, Tennessee, USA.
    Maslow, A. H. (1968). Toward a psychology of being (2nd ed.). New York: Van Nostrand Reinhold.
    Mayer, R. D., Dyck, J. & Vilberg, W. (1986). Learning to program and learning to think: What’s the connection? Communications of the Association for Computing Machinery, 29(7), 605-610.
    Mayer, R. E. & Fay, A. L. (1987). A chain of cognitive changes with learning to program in logo. Journal of Educational Psychology, 79, 269-279.
    Mayer, R. E. (1988). From novice to expert. In M. Helander (Ed.). Handbook of human-computer interaction (pp. 569-580). Amsterdam: North-Holland.
    Myller, N., & Nuutinen, J. (2006). JeCo: Combining program visualization and story weaving. Informatics in Education, 5(2), 195–206.
    Moreno, A., Myller, N., & Bednarik, R. (2005). Jeliot 3, An extensible tool for program visualization. 5th Annual Finnish / Baltic Sea Conference on Computer Science Education.
    Pea, R. D. (1983). Logo programming and problem solving. (Technical Report No. 12). New York: Bank Street College, Center for Children and Technology.
    Pintrich, P. R., & De Groot, E. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82, 33-40.
    Pintrich, P. R., Smith D. A. F., Garcia, T. & McKeachie, W.J. (1991). A manual for the use of the motivated strategies for learning questionnaire (MSLQ), National Center for Research to Improve Postsecondary Teaching and Learning.
    Pintrich, P. R., & Schrauben, B., (1992). Students’ motivational beliefs and their cognition engagement in classroom academic tasks. In D. H. Schunk, & J. L. Meece. (Eds.) Hillsdale, New Jersey: Erlbaum.
    Polya, G. (1957). How to solve it: A new method of mathematical method. Solved Gifted Child Today. March/April, 61- 63. Princeton, NJ: Princeton.
    Polya, G. (1962). Mathematical Discovery, On Understanding, Learning, and Teaching Problem Solving. Wiley, 2, 117.
    Raffini, J. P. (1996). 150 ways to increase intrinsic motivation in the classroom. Boston: Allyn & Bacon.
    Satratzemi, M., Dagdilelis, V., & Evaggelidis, G. (2002). An alternating approach of teaching programming in the secondary school. Proceedings of 3rd panhellenic conference with international participation,‘information & communication technologies in education’, Phodes, Greece, 289-298.
    Seidman, R. H. (1988). New directions in educational computing research. In R. E. Mayer (Ed). Teaching and learning computer programming: Multiple research perspectives (pp. 299-308). Hillsdale, NJ: Lawrence Erlbaum.
    Shaw, D. G. (1986). Effects of learning to program a computer in BASIC or Logo on problem-solving abilities. AEDS Journal, 19, 176-189.
    Solso, R. L. (1995). Cognitive Psychology (4th ed.). Boston: Allyn & Bacon.
    Schunk, D. (2003). Learning theories. An educational perspective. Upper Saddle River: Merrill.
    Schunk, D. H. (2004). Learning theories: An educational perspective (4th Ed.). Pearson: Merrill Prentice Hall.
    Smith, P. L., & Ragan, T. J. (1999). Instructional design (2nd ed.). NY: John Wiley & Sons.
    Salomon, G. & Perkins, D. N. (1987). Transfer of cognitive skills from programming: When and how? Journal of Educational Computing Research, 3, 149-170.
    Snow, R. E., Corno, L., & Jackson, D. (1996). Individual differences in affective and conative functions. In M. Boekaerts & P. R. Pintrich (Eds.), Handbook of Educational Psychology (pp. 243-310). New York: Macmillan.
    Soloway, E., & Spohrer, J. C. (1989). Studying the novice programmer. Hillsdale, NJ: Lawrence Erlbaum Associates.
    Tabachnick, B. G., & Fidell, L. S. (2006). Using Multivariate Statistics (5th ed.). Pearson International Edition: Allyn and Bacon.
    Weiner, B. (1985). An attributional theory of achievement motivation and emotion. Psychological Review, 92(4), 548-573.
    Winslow, L. E. (1996). Programming pedagogy–A psychological overview. SIGCSE Bulletin, 28, 17-22.

    下載圖示
    QR CODE