簡易檢索 / 詳目顯示

研究生: 闕妤安
Chueh, Yu-An
論文名稱: 以眼球追蹤法分析國中數學幾何試題的解題歷程
Using Eye Tracking Method to Explore How Undergraduate Students Solve Junior-Level Geometric Problem
指導教授: 楊芳瑩
Yang, Fang-Ying
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 108
中文關鍵詞: van Hiele幾何思考層次眼球追蹤問題解決閱讀歷程
英文關鍵詞: van Hiele geometric thinking, eye tracking, problem solving, reading process
DOI URL: http://doi.org/10.6345/THE.NTNU.GSE.005.2018.F02
論文種類: 學術論文
相關次數: 點閱:319下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為能瞭解不同數學幾何學習經驗的學生如何解題,本研究以Usiskin在1982年發展的Van Hiele幾何思考層次測驗做為前測問卷,以得知學生之先備幾何能力與經驗,透過眼球追蹤技術可以瞭解各區閱讀比重情況,以探究不同幾何能力學生的解題歷程。本研究以28位非理工科大學生為受試者,蒐集其解決數學幾何問題時的眼動資料,隨後進行晤談。結果發現,(1)區域內閱讀時間百分比(PTSZ)而言,「幾何圖形與尺規作圖」中,幾何思考層次較高的學生因對於幾何性質更為清楚明確,相對分配較少時間處理選項區域內的訊息,在「三角形的基本性質」單元中,幾何思考層次較高的者,分配較多時間在求解標的與附圖中所提供的線索,「相似形」、「圓」和「幾何與證明」,幾何思考達第三層次的學生通常花時間在問題及題幹區域百分比較高。高思考層次組較能在解題過程中,分配較多時間在解題資訊所在之處。(2)區域內首次閱讀凝視時間(FPFDZ)而言,幾何思考層次較高的學生,會花較多時間在關鍵資訊上建構問題表徵。(3)區域內總凝視時間(TFDZ)而言,整體而論,高幾何思考的學生,會花較多時間在處理附圖區域的資訊。(4)圖文交互閱讀次數和回視而言,在「圓」單元中,低思考層次者嘗試在問題和正解返回題幹區域間搜尋相關線索的交互閱讀次數較高思考層次者多,且從正解回視問題區域的次數明顯多於高思考層次者,表低思考層次者可能因對於圓的幾何性質不熟悉,需反覆確認及搜尋題目所提供的線索,此過程中亦可能對於題幹中的資訊仍有部分尚未理解。(5)此結果部分與過去研究相符,論文最後提供此研究對於數學教學上的建議。

    In order to understand how students with different mathematical geometry learning experiences solve problems, this study use the Van Hiele Geometry Test developed by Usiskin in 1982 as pretest questionnaire to preliminarily know students’ geometry ability and experience. In this study, we used eye tracking method to collect 28 non-science undergraduate students’ eye movement patterns when they were solving national standardized examination on the topic of geometry. Having interview immediately afterwards. After data processing, the following conclusions were drawn from this study: (1) With regard to PTSZ, in Geometry and Ruler Charting chapter, students with higher levels of geometric thinking spent relatively less time on processing of the option area; In Triangle chapter, those with higher levels of geometric thinking spent more time on processing the clues from figures. In Similarity chapter, students who reached the third level of geometric thinking often spent more time on question and statement area. (2) In terms of FPFDZ, high geometric thinking students spent more time constructing problem representation on key information. (3) In terms of TFDZ, high geometric thinking students generally spent more time dealing with the information from figure area. (4) With regard to ISC and regression, in Circle chapter, those with low thinking level tried to search more often for relevant clues between statement and problem as well as correct answer area. Moreover, the number of regression from correct answer to question is higher than high thinking level. (5) The result is consistent with the previous researches. In the end of this study provides some suggestions for mathematics teaching.

    目錄 致謝 I 摘要 II ABTRACT III 目錄 IV 圖目錄 VIII 表目錄 IX 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 3 第三節 研究限制 4 一、 研究對象 4 二、 研究內容 4 第四節 研究的重要性 4 第五節 名詞解釋 5 一、 van Hiele幾何思考理論 5 二、 Van Hiele幾何思考層次測驗 5 三、 數學幾何試題 6 四、 解題歷程模式 6 五、 眼球追蹤技術 6 第二章 文獻探討 7 第一節 問題解決歷程 7 一、 問題解決的定義 7 二、 問題解決與數學解題歷程 7 第二節 VAN HIELE幾何思考發展理論 9 一、 Van Hiele幾何思考層次理論 9 二、 Van Hiele幾何思考層次測驗 12 第三節 眼球追蹤技術的相關應用之研究 13 一、 眼球追蹤技術 13 二、 眼球追蹤技術應用在數學問題解決之相關研究 13 第三章 研究方法 16 第一節 研究對象 16 第二節 研究工具 17 一、 硬體部分:眼動儀 17 二、 前測試題 18 三、 眼動實驗材料 19 第三節 研究設計與施測流程 21 第四節 資料分析 22 一、 前測與研究試題測驗 23 二、 閱讀歷程分析 23 三、 閱讀歷程與試題測驗交叉分析 27 第五節 研究流程 27 一、 工具準備與確認主題階段 28 二、 正式施測 29 三、 資料分析與統整結果 31 第四章 研究結果 32 第一節 試題測驗表現 32 第二節 閱讀歷程分析 36 一、 全頁眼動資訊 37 二、 各區域眼動資料統計結果 39 第三節 前測表現與閱讀歷程交叉分析 47 一、 依幾何思考層次分組之整體眼動資料分析 48 二、 比較幾何思考層次高低分組在各單元興趣區間(AOI)之眼動模式 50 第五章 綜合討論與展望 67 第一節 研究結果與討論 67 一、 前測測驗與研究試題表現 67 二、 讀題歷程分析 68 (一) 各單元全頁讀題歷程 68 (二) 各區域讀題歷程 69 三、 待答問題之回應 72 (一) 前測試題和標準化數幾何測驗的答題表現是否存在關聯性? 72 (二) 不同幾何思考層次的學習者在幾何試題圖文注意力分佈上的是否有所差異? 72 (三) 不同幾何思考層次的學習者在幾何試題的注意力分配是否有所差異,進而影響其答題成功與否? 73 第二節 教育上的意涵 74 一、 對於不同思考層次學習者應提供合適的教學安排 74 二、 依各單元的注意力分布情況,在教學時評估學生可能的解題困難 74 第三節 未來展望 75 一、 研究對象 75 二、 施測方式 75 三、 未來研究方向 76 參考文獻 77 附件一 VAN HIELE 幾何能力測驗題本 86 附件二 國中數學幾何研究試題 99

    一、中文摘要
    左台益、呂鳳琳、曾世綺、吳慧敏、陳明璋、譚寧君(2011)。以分段方式降低任務複雜度對專家與生手閱讀幾何證明的影響。教育心理學報,43,291-314。
    朱建正(1996)。造型活動在國小幾何教學中的地位。國立嘉義師範學院八十四學年度數學教育研討會論文暨會議實錄彙編,180-186。
    吳德邦(1999)。簡介范析理幾何思考理論。國立臺中師範學院進修暨推廣部,進修學訊年刊,5,47-86。
    吳德邦(2000a)。台灣中部地區國小學童 van HIELE 幾何思考層次之研究—晤談部分。進修學訊年刊,6,頁11-32。國立台中師範學院進修推廣部。
    吳德邦(2000b)。台灣中部地區國小學童 van Hiele 幾何思考層次之研究—筆試部份。載於國立臺南師範學院(編印),八十八學年度師範學院教育學術論文發表會論文集(35-66)。台南市:國立臺南師範學院。
    吳德邦(2001a):VAN HIELE 五階段學習模式對國小學生學習幾何概念之研究。文章發表於2001年數學教育專題研究計畫成果討論會。台北市行政院國家科學委員會科學教育發展處主辦,2001年11月9-10日(星期五、六)。
    吳德邦(2002)。使用van Hiele 五階段學習模式開發九年一貫制課程圖形與空間教材教法之研究。文章發表於2002年數學教育專題研究計畫成果討論會,台北市行政院國家科學委員會科學教育發展處主辦,2002年11月9-10日。
    吳德邦(2003)。國小學生在圖形與空間概念知覺性、操弄性、作圖性、論說性了解之研究。文章發表於2003年數學教育專題研究計畫成果討論會,台北市行政院國家科學委員會科學教育發展處主辦,2003年11月22-23日。
    吳德邦(2005)。國小學生立體幾何圖畫表徵之研究-從van Hiele 理論的觀點。文章發表於行政院國家科學委員會專題研究計畫成果報告,台北市行政院國家科學委員會科學教育發展處主辦。2005年11月19日。
    吳德邦、戴五騰和謝翠玲(2001)。使用五階段學習模式對國小一年級學生學習幾何概念之研究。文章發表於中華民國第十七屆科學教育學術研討會暨第十四屆科學教育學會年會。高雄市國立高雄師範大學,2001年12月7-8日。
    吳德邦和薛建成(2004)。依據 van Hiele 理論製作國小學童幾何思考層次評量工具之研究。文章發表於「學習教學&教學學習:數學教師教育研究之系列對話」研討會,台北市台灣數學教育學會、國立臺北師範學院主辦,2004年11月27 日。
    林玉琦(2003)。國小高年級學童的梯形認知成份與VHL 發展層次之研究。國立臺中師範學院進修推廣部數學教育碩士論文(未出版)。
    林碧珍(1993)。兒童「相似性」概念發展之研究―長方形。新竹師院學報,6,333-378。科學發展月刊(2001)。 我國國中生數理科表現最新世界排名。29(1),38-39。
    紀小玉(2006):探討九年一貫數學課程國小學童幾何幾何思考層次。 國立臺中師範學院數學教育研究所碩士論文(未出版)。
    教育部(2009)。教育部十二年國民基本教育實施計畫。2012 年3 月17 日,取自http://140.111.34.179/draft/index.html
    陳奕廷(2012)。眼球追蹤在學童空間幾何能力表現觀察之探究。國立台中教育大學數學教育研究所碩士論文。
    陳姿良 、吳德邦(2009)。臺灣中部地區國小高年級學生 van Hiele幾何推理能力之研究。國立臺中教育大學數學教育學系碩士論文。
    陳琪瑤、吳昭容(2012)。幾何證明文本閱讀的眼動研究:圖文比重及圖示著色效果。國立臺灣師範大學教育心理與輔導學系碩士論文。
    陳學志, 賴惠德, & 邱發忠. (2010). 眼球追蹤技術在學習與教育上的應用. 教育科學研究期刊, 55(4), 39-68.
    黃盈君(2001)。國小五年級學生三角形圖形概念之分析研究。國立臺中師範學院(未出版)。
    黃敏晃. (2000). 規律的尋求. 心理出版社股份有限公司.
    葉明達、柳賢(2007)。建立判讀理解層級:高中生進行數學論證判讀活動困難之探討。教育與心理研究,30(3),79-109。
    劉秋木. (2015). 國小數學科教學研究. 台灣五南圖書出版股份有限公司.
    盧銘法(1996)。國小中高年級學生幾何概念之分析研究—以 van Hiele 幾何思考水準與試題關聯結構分析為探討基礎。國立台中師範學院國民教育研究所碩士論文。
    薛建成(2003)。依據 van Hiele 幾何思考理論—探討台灣中部地區國小學童幾何概念發展之研究。未出版碩士論文,國立臺中師範學院,臺中市。

    二、英文摘要
    Bayazit, A. et al. (2014). Predicting learner answers correctness through eye movements with random forest. Educational Data Mining: Applications and Trends. A. Peña-Ayala, ed. Springer International Publishing. 203–226.
    Burger, W. F., & Shaughnessy, J. M.(1986). Assessing children's intellectual growth in geometry (Final report of the Assessing Children's Intellectual Growth in Geometry project). Corvallis, OR: Oregon State University, Department of Mathematics.
    Chaffin, R., Morris, R. K., & Seely, R. E. (2001 ). Learning new word meanins from context: A study on eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(1 ), 225-235.
    Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision research, 36(12), 1827-1837.
    Epelboim, J., & Suppes, P. (1997). Eye movements during geometrical problem solving. Perception, 26(1_suppl), 138-138.
    Epelboim, J., & Suppes, P. (2001). A model of eye movements and visual working memory during problem solving in geometry. Vision research, 41(12), 1561-1574.
    Freudenthal, H. (1973). What groups mean in mathematics and what they should mean in mathematical education. Developments in mathematical education, 101-114.
    Freudenthal, H. (2012). Mathematics as an educational task. Springer Science & Business Media.
    Fuys, D. (1984). English Translation of Selected Writings of Dina van Hiele-Geldof and Pierre M. van Hiele.
    Fuys, D. (1984). English Translation of Selected Writings of Dina van Hiele-Geldof and Pierre M. van Hiele.
    Fuys, D., Geddes, D., & Tischler, R.(1988). The van Hiele model of thinking in geometry among adolescents. Reston, VA: The National Council of Teachers of Mathematics, Inc.
    Gutierrez, A. ,Jaime, A. & Fortuny, J. M.(1991).An alternative paradigm to evaluate the acquisition of the van Hiele levels. Journal for Research in Mathematics Education. 22 (3),237-251.
    Haber, R. N., & Hershenson, M. (1973). The psychology of visual perception. Holt, Rinehart & Winston.
    Hegarty, M., & Just, M. A. (1993). Constructing mental models of machines from text and diagrams. Journal of memory and language, 32(6), 717-742.
    Hegarty, M., Mayer, R. E., & Green, C. E. (1992). Comprehension of arithmetic word problems: Evidence from students' eye fixations. Journal of Educational Psychology, 84(1), 76.
    Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal of educational psychology, 87(1), 18.
    Hoffer, A.(1983). van Hiele based research. In R. Lesh, & M. Landau(Eds.), Acquisition of mathematical concepts and processes.(pp. 205-228). New York, NY: Academic Press.
    Just, M. A., & Carpenter, P. A. (1980).A theory of reading: From eye fixation to comprehension. Psychological Review, 87, 329-354.

    Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental rotation and individual differences in spatial ability. Psychological review, 92(2), 137.
    Madsen, A.M. et al. (2012). Differences in visual attention between those who correctly and incorrectly answer physics problems. Physical Review Special Topics - Physics Education Research. 8, 1 (2012), 010122.
    Marguerite, M. (2001). The van hiele levels of geometric understanding.
    Molina, D. D.(1990). The applicability of the van Hiele theory to transformational geometry. Unpublished doctoral dissertation, The University of Texas at Austin.
    Peterson, M. S., Kramer, A. F., & Irwin, D. E. (2004). Covert shifts of attention precede involuntary eye movements. Attention, Perception, & Psychophysics, 66(3), 398-405.
    Polya,G.(1945) How to solve it: A new aspect of mathematical model, Princeton University Press Princeton
    Rayner, K., & Morrison, R. E. (1981). Eye movements and identifying words in parafoveal vision. Bulletin of the Psychonomic Society, 17(3), 135-138.
    Rayner, K. (1998). Eye movements in reading and information processing: 20 years of
    research. Psychological Bulletin, 124(3), 372-422
    Schooler, J., Ohlson, S., & Brooks, K. (1993). Thoughts beyond words: When language overshadows insight. Journal of Experimental Psychology General, 122(2), 166-183
    Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem? Journal for Research in Mathematics Education, 34, 4-36.
    Sfard,A.(1991).On the dual nature of Mathematical conceptions: reflections on process and objects as different side of the same coin, Educational Studies in Mathematics,221-36.
    Shaughnessy, J., M., & Burger, W., F. (1985). Spadework prior to deduction in geometry. Mathematics Teacher 78(6), 419-428.
    Simon, H. A. (1978). Information-processing theory of human problem solving. Handbook of learning and cognitive processes, 5, 271-295.
    Soluch, P., & Tarnowski, A. (2013). O metodologii badań eyetrackingowych. Lingwistyka Stosowana, 7, 115-135.
    Sweller, J. (1988). Cognitive load during problem solving: Effects on learning.Cognitive Science, 12, 257-285.
    Sweller, J. (2010a). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review, 22, 123-138.
    Sweller, J. (2010b). Cognitive load theory: Recent theoretical advances. In J. L. Plass, R. Moreno, & R. Br ̈unken(Eds.), Cognitive Load Theory (pp. 29-47). New York, NY: Cambridge University Press.
    Tsai, M.-J. et al. 2012. Visual attention for solving multiple- choice science problem: An eye-tracking analysis. Computers & Education. 58, 1 (2012), 375–385. 

    Usiskin.(1982). van Hiele levels and achievement in secondary school geometry(Final Report of the Cognitive Development and Achievement in Secondary School Geometry Project). Chicago, IL: University of Chicago, Department of Education.(ERIC Reproduction Service No. ED 220 288).
    Van Essen, D. C., Anderson, C. H., & Felleman, D. J. (1992). Information processing in the primate visual system: an integrated systems perspective. Science, 255(5043), 419-423.
    Van Hiele, P. M.(1986). Structure and insight: A theory of mathematics education. Orlando, FL: Academic Press.
    Wirszup, I.(1976). Breakthroughs in the psychology of learning and teaching geometry. In J. L. Martin, & D. A. Bradbard(Eds.), Space and geometry: Papers from a research workshop(pp. 75-97). Columbus, OH: ERIC Center for Science, Mathematics and Environmental Education.(ERIC Document Reproduction service No. 132033).
    Wright, R. D., & Ward, L. M. (2008). Orienting of attention. Oxford University Press.
    Wu, D. B. & Ma, H. L. (2010). An application of gm(0,n) to analyze the ma-wu’s test of Practical reasoning abilities. Proceedings of the Sixth IASTED International Conference Advances in Computer Science and Engineering (ACSE 2010) (pp.232-237). March 15-17, 2010 Sharm El-Sheikh, EGYPT. ISBN:978-88986-831-1 (NSC 94-2521-S-275-001, NSC 95-2521-S-275-001, NSC96-2521-S-275-001)
    Wu, D. B. (1994). A Study of the use of the van Hiele madel in the teaching of non-Euclidean geometry to prospective elementary school teachers in Taiwan, the Republic of China. Unpublished Doctoral dissertation, University of Northern Colorado, Greeley, Colorado.
    Wu, D. B., & Ma, H. L. (2005a). A study of the geometric concepts of the elementary school students at the van Hiele level one. In H. L. Chick & J. L. Vincent (Eds.), Proceedings 29th conference of the international group for the psychology of mathematics education, 4, 329-336. Melborune, Australia: PME.
    Wu, D. B., & Ma, H. L. (2005b, August). A study of the developing procedure of the van Hiele geometry test for elementary school students. Paper presented at The Third East Asia Regional Conference on Mathematics Education, Shanghei, Nanjing, and Hangzhou China.
    Yang, K. L., & Lin, F. L. (2008). A model of reading comprehension of geometry proof.Educational Studies in Mathematics Education, 67(1), 59-76.
    Yang, K. L., Lin, F. L., & Wang, Y. T. (2008). The effects of proof features and question probing on understanding geometry proof. Contemporary Educational Research Quarterly, 16(2), 77-100.

    下載圖示
    QR CODE