研究生: |
郭耀仁 Kuo, Yao-Ren |
---|---|
論文名稱: |
室溫光磁轉換奈米碳質表面製備比較 |
指導教授: | 王忠茂 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 室溫光磁轉換 、磁性原子力顯微術 、掃描式穿隧顯微術 |
英文關鍵詞: | photomagnetism, magnetic force microscopy, scanning tunneling microscopy |
DOI URL: | https://doi.org/10.6345/NTNU202202629 |
論文種類: | 學術論文 |
相關次數: | 點閱:85 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑒於2,2-二吡啶-5-胺基菲羅啉含釕化合物,Ru(phen-NH2)32+,在室溫下具有光磁轉換特性,本實驗因而探討含鐵2,2-二吡啶-5-胺基菲羅啉化合物也是否具有類似性質。實驗結果顯示:若以化學還原修飾法將Fe(phen-NH2)32+修飾於多壁奈米碳管 (MWCNT) 表面,再以磁性原子力顯微術 (MFM) 進行磁性分析,發現Fe(phen-NH2)32+並不具有室溫光磁轉換能力。本實驗也以電化學氧化聚合法以及電化學偶氮還原修飾法,將Fe(phen-NH2)32+修飾於白金石英震盪天平電極,探討其反應機制的異同。結果顯示:兩者在修飾初期,其修飾量差異不大,但因氧化聚合可進行縱向堆積,故在多次電位掃瞄後,Fe(phen-NH2)32+的聚合量遠高於以還原修飾法所得的結果。此外,我們也利用相同方法將Fe(phen-NH2)32+修飾在高定向熱解石墨 (HOPG) 表面,再利用掃描式穿隧顯微術 (STM) 、原子力顯微術 (AFM) 進行表面影像分析,對兩種修飾法進行深入探討。
In view of the fact that tris[5-amino-1,10-phenanthroline] ruthenium(II) (Ru(phen-NH2)32+) exhibited photomagnetism at room temperature, we carried out investigations on tris[5-amino-1,10-phenanthroline] iron(II)(Fe(phen-NH2)32+) for its photomagnetism. Analysis of Fe(phen-NH2)32+ as adsorbed on multiwalled carbon nanotubes (MWCNTs) with the magnetic-mode AFM (MFM) showed that the tubes did not exhibit room-temperature photomagnetism before and after the modification. We investigated and compared the adsorption of Fe(phen-NH2)32+ made via electrochemical reduction and oxidation processes using Pt-sputtered electrochemical quartz microbalance techniques. Both showed different adsorption behavior at the early stage of the modification. The surface coverage obtained from the former was more significant than the latter in terms of weight. We also modified Fe(phen-NH2)32+ on highly oriented pyrolytic graphite (HOPG) . The STM and AFM analyses showed similar results.
英文文獻
(1) S. lijima, Nature, 1991, 354, 56.
(2) P. Poncharal, Z. Wang, D. Ugarte, W. Heer, Science, 1999, 283, 1513.
(3) K. Maehashi, T. Katsura, K. Kerman, Y. Takamura, K. Matsumoto, E. Tamiya, Anal. Chem., 2007, 79, 782.
(4) C. Cao, J. Andrews, A. Kumar, A. Franklin, ACS Nano, 2016, 10, 5221.
(5) J. YU, Oklahoma State Univ., 1991, 7.
(6) C. Wang, S. Chen, C. Wang, Analyst, 2002, 127, 1507.
(7) R. Shervedani, S. Dehaghi, M. Foroushani, Electroanalysis, 2016, 28, 874.
(8) G. Binnig, C. F. Quate, Ch. Gerber, Phys. Rev. Lett. 1986, 56, 930.
(9) D. Rugar, H. Mamin, P. Guethner, S. Lambert, J. Stern, I. McFadyen, T. Yogi, J. Appl. Phys., 1990, 68, 1169.
(10) Y. Martin, H. Wickramasinghe, Appl. Phys. Lett., 1987, 50, 1455.
(11) G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett., 1982, 57.
(12) J. Kim, A. Munro, D. Beauchemin, G. Jerkiewicz, Anal. Chem., 2016, 88, 10599.
(13) S. Bruckenstein, M. Shay, J. Electroanal. Chem., 1985, 188, 131.
(14) W. Lin, Y. Han, T. Chang, C. Wang, C. Chang, J. Tsay, J. Phys. Chem. C, 2015, 119, 20673.
(15) I. Gregori, F. Bedioui, J. Devynck, J. Electroanal. Chem., 1987, 238, 197.
(16) J. Kim, J. Huang, A. Lozanne, Cornell Univ., 2013, 3.