研究生: |
翁士民 Shih-Min Weng |
---|---|
論文名稱: |
高溫超導銅氧化物Y1-xCaxBa2Cu3Oy和Y1-xPrxBa2Cu4O8之光譜研究 Optical studies of Y1-xCaxBa2Cu3Oy and Y1-xPrxBa2Cu4O8 cuprates |
指導教授: |
劉祥麟
Liu, Hsiang-Lin |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 164 |
中文關鍵詞: | 光學 、超導 、釔鋇銅氧 、釔釙鋇銅氧 、釔鈣鋇銅氧 、拉曼 、銅氧化物 、掃描穿隧顯微術 |
英文關鍵詞: | optical, superconductor, YBCO, Y1-xCaxBa2Cu3Oy, Y1-xPrxBa2Cu4O8, Raman, cuprate, SPM |
論文種類: | 學術論文 |
相關次數: | 點閱:197 下載:22 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究摻雜不同電洞濃度之銅氧化物超導體Y1-xCaxBa2Cu3Oy與次摻雜之Y1-xPrxBa2Cu4O8的光譜特性,這些資訊有助於我們了解在不同相圖區域的樣品之內部電子結構、晶格動力學及雙磁振子激發的變化。
首先,藉由分析Y1-xCaxBa2Cu3Oy的全頻光譜,我們發現,隨著電洞濃度增加,紅外光活性聲子逐漸被屏蔽,電漿邊界有藍位移的趨勢,尤其重要的是光學電導率顯現高頻往低頻的權重轉移現象,與Y1-xCaxBa2Cu3Oy的電性相轉變有緊密的關連性。此外,總和定理的分析顯示過摻雜樣品的有效電荷數目偏離Tc與電洞濃度的關係曲線。
其次,我們分析Y1-xCaxBa2Cu3Oy的拉曼散射光譜,實驗結果顯示電子-聲子交互作用引起O(2,3)反向振動模的不對稱,隨著電洞濃度增加,頻率往低頻偏移至過摻雜而趨緩,有趣地是,僅有理想摻雜樣品的聲子自洽能受到超導臨界溫度之影響。另一方面,我們觀察到高頻拉曼散射光譜呈現雙磁振子的激發峰,隨著電洞濃度增加,雙磁振子的峰值往低頻偏移且半高寬變大,顯示其超交換能變小,衰減參數變大,反鐵磁性短程有序的相干長度變短。
最後,我們觀察到Y0.9Pr0.1Ba2Cu4O8樣品的雙磁振子峰值,介於YBa2Cu4O8與PrBa2Cu4O8的雙磁振子激發峰之間。
We present the optical reflectivity and Raman-scattering measurements of Y1-xCaxBa2Cu3O7 thin films and Y1-xPrxBa2Cu4O8 polycrystals. The room-temperature optical conductivity spectrum of the YBa2Cu3O6 is typical of an insulator, showing only phonons in the far-infrared and several electronic absorption bands at higher frequencies. With increasing oxygen concentration, there is a large spectral weight transferred from high-to low-frequency region. Similar behavior is also observed in the Ca doping. There are three important changes in the Raman phononic spectra:(i) a harding of the A1g c-axis bridging oxygen phonon with increasing oxygen content; (ii) a softening and broadening of the B1g planar oxygen phonon after Ca doping; (iii) as the temperature is lowered, the B1g planar oxygen phonon in YBa2Cu3O7 shows remarkable self-energy effects when the superconductiving gap opens. Moreover, the observed B1g two-magnon excitation peak near 2700 cm-1 in YBa2Cu3O6 is broadened and weakened with increasing oxygen concentration or Ca content. For the Y0.7Ca0.3Ba2Cu3O6 film, no two-magnon excitation is visible, indicating an antiferromagnetic correlation length is less than twice the lattice parameter in the heavily overdoped phase regime. Interestingly the high-frequency part of B1g Raman-scattering spectrum of Y0.9Pr0.1Ba2Cu4O8 exhibits a band peaked at ~2650 cm-1, whose position is located between the YBa2Cu4O8 and PrBa2Cu4O8.
[1] H. K. Onnes and Leiten Commum. 120b, 122b, 124c (1911).
[2] W. Meissner and R. Ochsenfeld, Naturwiss 21, 787 (1933).
[3] J. G. Bednoz and K. A. Mller, Zeitschrift fr physik B-Condensed Matter 64, 189 (1986).
[4] M. K. Wu, J. R. Ashburn, and C. J. Torng, Phys. Rev. Lett. 58, 908 (1987).
[5] 陸繼宗、黃保法著,絕對零度的奇蹟 : 超導超流與相變。臺北縣新店市:世潮,民91年。
[6] 林秀豪。「費米液體(Fermi Liquid)」。物理雙月刊24卷5期(民國91年10月):頁622-626。
[7] 張其瑞等著,高溫超導電性。中國浙江省:浙江大學,民81年。
[8] C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).
[9] Tom Timusk and Bryan Statt, Rep. Prog. Phys. 62, 61 (1999).
[10] A. G. Loeser, Z. X. Shen, M. C. Schabel, C. Kim, M. Zhang, and A. Kapitulnik, Phys. Rev. B. 56, 14185 (1997).
[11] H. Ding, M. R. Norman, J. C. Campuzano, M. Randeria, A. F. Bellman, T. Yokoya, T. Takahashi, T. Mochiku, and K. Kadowaki. Phys. Rev. B 54, 9678 (1996).
[12] A. G. Loeser, Z. X. Shen, D. S. Dessau, D. S. Marshall, C. H. Park, P. Fournier, and A. Kapitulnik, Science 273, 325 (1996).
[13] P. J. White, Z. X. Shen, C. Kim, J. M. Harris, A. G Loeser, P. Fournier, and A. Kapitulnik, Phys. Rev. B 54, 15669 (1996).
[14] C. H. Renner, B. Revaz, J. Y. Genoud, K. Kadowaki, and O. Fischer, Phys. Rev. Lett. 80, 149 (1998).
[15] C. C. Homes, T. Timusk, R. Liang, D. A. Bonn, and W. N. Hardy, Phys. Rev. Lett. 71, 1645 (1993).
[16] 郝柏林著,相變與臨界現象。新竹市:凡異,民81年。
[17] S. Uchida, Solid State Communications 126, 57 (2003).
[18] Y. Dagan and G. Deutscher, Phys. Rev. Lett. 87, 177004 (2001).
[19] G. Deutscher, Y. Dagan, A. Kohen, and R. Krupke, Physica 341C-348C, 1629 (2000).
[20] R. B. Laughlin, Phys. Rev. Lett. 80, 5188 (1998).
[21] T. Valla, A. V. Fedorov, P. D. Johnson, B. O. Wells, S. L. Hulbert, Q. Li, G. D. Gu, and N. Koshizuka, Science 285, 2110 (1999).
[22] Douglas A. Skoog and James J. Leary著,林敬二、林宗義審譯,儀器分析,美亞書版股份有限公司,1971第四版上冊。
[23] 毛光興著,儀器分析,幼獅文化事業公司,中華民國六十九年七月第二版。
[24] 李冠卿著,近代光學,聯經出版社,中華民國七十七年九月初版。
[25] 鄧勃、 宁永成、 劉密新著,儀器分析,清華大學出版社出版,中華民國八十年五月第一版。
[26] 掃描式探針顯微鏡檢測技術基本原理與操作模式介紹,Product Guide。
[27] Instruction Manual Solver P47, Product Guide,http://www.ntmdt.ru
[28] 曾文聖、林良平,「原子力顯微鏡的原理及其在生物學上之應用」,科儀新知19卷6期(中華民國87年6月):頁4-15。
[29] K. H. Wu, M. C Hsieh, S. P. Chen, S. C. Chao, J. Y. Juang, T. M. Uen, Y. S. Gou, T. Y. Tseng, C. M. Fu, J. M. Chen, and R. G. Liu, Jpn. J. Appl. Phys. 37, 4346 (1998).
[30] A. Carrington, D.J.C. Walker, A. P. Mackenzie, and J. R. Cooper, Phys. Rev. B 48, 13051(1993).
[31] 林沛宏,國立交通大學物理研究所碩士論文,92年7月。
[32] G. A. Kourouklis, A. Jayaraman, B. Batlogg, R. J. Cava, M. Stavola, D. M. Krol, E. A. Rietman, and L. F. Schneemeyer, Phys. Rev. B 36, 8320 (1987).
[33] M. A. Beno, C. Soderholm, D. W. Capone Ⅱ, D. G. Hinks, J. D. Jorgenson, and I. K. Schuller, Appl. Phys. Lett. 51, 57 (1987).
[34] R. J. Cava, B. Batlogg, C. H. Chen, E. A. Rietman, S. M. Zahurak, and D. Werder, Phys. Rev. B 36, 5719 (1987).
[35] C. Camerlingo, I. Delfino, and M. Lepore, Supercond. Sci. Technol. 15, 1606 (2002).
[36] Gerald Burns, High-temperature superconductivity : an introduction, ( Boston:Academic Press, 1992 ).
[37] E. Straube, D. Hohlwein, and F. Kubanek, Physica C 295, 1 (1998).
[38] D. Palles, E. Liarokapis, Th Leventour, and B. C. Chakoumakos, J. Phys.: Condens. Matter 10, 2515 (1997).
[39] J. Bckstrm, D. Engberg, A. Mellergrd, R. Delaplane, S. Eriksson, M. Kakihana, M. Osada, L. Brjesson, Neutron diffraction, Rietveld refinement and Reverse Monte Carlo modelling of PrBa2Cu4O8, 371.
[40] P. Berastegui, L. G. Johansson, M. Kll, and L. Brjesson, Physica C 204, 147 (1992).
[41] 國立交通大學林俊源教授實驗室。
[42] 私立淡江大學林大欽教授實驗室。
[43] C. N. Chang, Y. F. Song, C. H. Hsieh, H. F. Liu, H.-C. Kao, and H. C. Yang, Chinese Journal of physics 37, 98 (1999).
[44] William G. Fateley, Francis R. Dollish, Neil T. McDevitt, Freeman F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations-The Correlation Method, ( New York : Wiley-Interscience, a dividion of John Wiley & Sons, INC., 1972 )。
[45] NCHC Chemistry Website, http://saturn.nchc.gov.tw:9091/cds/index. html.
[46] R. Liu, C. Thomsen, W. Kress, M. Cardona, and B. Gegenheimer, Phys. Rev. B 37, 7971 (1988).
[47] E. T. Heyen, R. Liu, C. Thomsen, R. Kremer, and M. Cardona, Phys. Rev. B 41, 11058 (1990).
[48] H. S. Obhi, E. K. H. Salje, and T. Miyatake, J. Phys.:Condens. Matter 4, 10367 (1992).
[49] K. K. Yim, J. Oitmaa, and M. M. Elcombe, Solid State Commun. 77, 385 (1991).
[50] S. L. Cooper, D. Reznik, A. Kotz, M. A. Karlow, R. Liu, M. V. Klein, W. C. Lee, J. Giapintzakis, and D. M. Ginsberg, Phys. Rev. B 47, 8233 (1993).
[51] J. Kircher, M. K. Kelly, S. Rashkeev, M. Alouani, D. Fuchs, and M. Cardona, Phys. Rev. B 44, 217 (1991).
[52] R. Liu, C. Thomsen, W. Kress, M. Cardona, and B. Gegenheimer, Phys. Rev. B 37, 7971 (1988).
[53] U. Fano, Phys. Rev. 124, 1866 (1961).
[54] M. Osada, M. Kakihana, M. Kll, and L. Brjesson, Appl. Phys. Lett. 81,4988 (2002).
[55] D. Vaknin, S. K. Sinha, D. E. Moncton, D. C. Johnston, J. M. Newsam, C. R. Safinya, and H. E. King, Phys. Rev. Lett. 58, 2802 (1987).
[56] G. Shirane, Y. Endoh, R. J. Birgeneau, M. A. Kastner, Y. Hidaka, M. Oda, M. Suzuki, and T. Murakami, Phys. Rev. Lett. 59, 1613 (1987).
[57] K. B. Lyons, P. A. Fleury, L. F. Schneemeyer, and J. V. Wasczak, Phys. Rev. Lett. 60, 732 (1988).
[58] K. B. Lyons, P. A. Fleury,J. P. Remeika, A. S. Cooper, and T. J. Negran, Phys. Rev. B 37, 2353 (1988).
[59] G. Blumberg, R. Liu, M. V. Klevin, W. C. Lee, D. M. Ginsberg, C. Gu, B. W. Veal, and B. Dabrowski, Phys. Rev. B 49, 13295 (1994).
[60] G. Blumberg, Moonsoo Kang, M. V. Klevin, K. Kadowaki, and C. Kendzira, Science 278, 1427 (1997).
[61] 林紀慧,國立台灣師範大學物理研究所碩士論文,91年6月。
[62] A. Kawabata, J. Phys. Soc. Jpn. 30, 68 (1971)
[63] C. M. Canali and S. M. Girvin, Phys. Rev. B 45, 7122 (1992).
[64] A. A. Maksimov, D. A. Pronin, S. V. Zaitsev, I. I. Tartakovskii, M. V. Klein, and B. W. Veel, JETP 89, 366 (1999).
[65] M. Kll, A. P. Litvinchuk, P. Berastegui, L. G. Johansson, L. Brjesson, M. Kakihana, and M. Osada, Phys. Rev. B 53, 3590 (1996).
[66] N. Watanabe, S. Adachi, S. Tajima, H. Yamauchi, and N. Koshizuka, Phys. Rev. B 48, 4180 (1993).
[67] I. Terasaki. N. Seiji, S. Adachi, and H. Yamauchi, Phys. Rev. B 54, 11993 (1996).
[68] A. P. Litinchuk, C. Thomsen, L. Brgesson, and C. W. Chu, Texas Center for Superconductivity at the University of Houstan, Preprint No. 98:025.