研究生: |
傅麗珍 Fu, Li-Chen |
---|---|
論文名稱: |
幼兒園STEAM課程實施歷程中幼教師課程意識之探究 A Study of Preschool Teachers' Curricular Consciousness in the Implementation Process of STEAM Curriculum |
指導教授: |
簡淑真
Chien, Shu-Chen |
口試委員: |
簡淑真
Chien, Shu-Chen 陳淑芳 Chen, Shu-fang 陳淑琦 Chen, Shuh-Chi 熊同鑫 Hsiung, Tung-hsing 保心怡 Pao, Hsin-i |
口試日期: | 2024/07/30 |
學位類別: |
博士 Doctor |
系所名稱: |
幼兒與家庭科學學系 Department of Child and Family Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 177 |
中文關鍵詞: | STEAM教育 、課程意識 、引導策略 |
英文關鍵詞: | STEAM education, curricular consciousness, guidance strategy |
研究方法: | 個案研究法 |
DOI URL: | http://doi.org/10.6345/NTNU202401809 |
論文種類: | 學術論文 |
相關次數: | 點閱:108 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討幼兒園STEAM課程實施歷程中幼教師之課程意識,以位於新北市一所大專院校附設幼兒園為研究場域,兩位幼教師為研究參與者,分別以「動手玩染布」及「校園的榕樹」探究式主題課程進行研究,採質性研究的方法,歷經6個月入班觀察,數次深度訪談、課前課後的非正式訪談以及定期的STEAM課程會議的研討等方式進行資料蒐集;所蒐集的資料包括訪談資料、研究者觀察記錄、研究者省思日誌、研究參與者所撰寫的省思日誌、教學記錄、教學會議記錄、照片及幼兒作品等書面資料,前述資料均轉換為文字、進行編碼、歸納及資料分析,本研究發現如下:
一、幼教師不同STEAM課程意識呈現不同STEAM教學實施
二、從喜歡到熱愛STEAM教育,進而提昇STEAM課程意識
三、幼教師的內隱STEAM課程知識透過實作及表達逐漸外顯
四、STEAM的課程對話有助於STEAM課程意識的提昇
五、幼教師透過STEAM教學反思提昇STEAM課程意識
六、幼教師STEAM課程意識影響幼教師教學引導策略之使用
This study aims to explore the curricular consciousness of preschool teachers during the implementation of a STEAM curriculum. The research was conducted at a college-affiliated in New Taipei City, with two preschool teachers participating as subjects. The study focused on two inquiry-based thematic courses: "Hands-on Fabric Dyeing" and "The Banyan Tree on Campus." Employing a qualitative research methodology, data were collected over six months through classroom observations, multiple in-depth interviews, informal pre- and post-class discussions, and regular STEAM curriculum meetings. The collected data, which included interview transcripts, researcher observation notes, researcher and participant reflection journals, teaching records, meeting minutes, photographs, and children's work, were transcribed, coded, and analyzed. The study's findings are as follows:
1. Preschool teachers' varying levels of STEAM curricular consciousness lead to different implementations of STEAM instruction.
2. A progression from a liking to a passion for STEAM education enhances curricular consciousness.
3. Teachers' implicit knowledge of STEAM curriculum becomes increasingly explicit through practice and expression.
4. Dialogue within the STEAM curriculum contributes to the enhancement of curricular consciousness.
5. Reflective practice in STEAM teaching further elevates teachers' curricular consciousness.
6. The teachers' STEAM curricular consciousness influences their use of guidance strategies.
壹、 中文部分
C.Kamii&R.DeVries(1999)。幼兒物理知識活動:皮亞傑理論在幼兒園中的應用。[陳燕珍譯]。光佑。(原著出版年1993)
E.Bodrova & D.J.Leong(2009)。心靈幫手─ Vygotsky 學派之幼兒教學法[蔡宜純譯]。心理。
G. Forman & C. Landry(2002)編著。幼兒教保模式--第七章:幼兒教育的建構觀點:兒童博物館的應用[楊慧美、林鴻瑜譯]。華騰。
J.A.Maxwell(2018)。質性研究設計:互動取向的方法。[陳劍涵譯]。心理。(原著出版年:L.G.Katz&S.C.Chard(1998)。探索孩子的心靈世界:方案教學的理論與實務。[陶英琪、陳穎涵譯]。心理。
L.S.Vygotsky (2000)。思維與語言。[李維譯]。台北市:昭明。(原著出版年1934)
M.A.S.Pulaski(1992)。兒童的認知發展導論(4版)。(王文科譯)。台北市:文景。(原著出版年:1980)
L.E.Berk & A.Winsler(2002)。鷹架幼兒的學習。[谷瑞勉譯]。台北市:心理。
P. Freire(2020)。受壓迫者教育學 [方永泉、張珍瑋譯](39-65頁)。臺北市:巨流。
Vygotsky L. (1997)。社會中的心智─高層次心理過程的發展[蔡敏玲、陳正乾譯]。台北市:心理。
R.Charlesworth& K.K.Lind( 2003)。兒童的科學與數學(上)[陳廣平、劉兆香譯]。洪葉文化。
王子華(2019)。「清華STEAM學校」之DDMT教學模式的建構。科學教育
王為國(2021)。STEAM 教育之教師專業問題與因應建議。臺灣教育評論月刊,10(5),115-119。
朱則剛(1996)。建構主義知識論對教學與教學研究的意義。教育研究雙月刊,第49期。
任婉毓(2018)。幼兒繪本實現STEAM教育之探究。國立清華大學碩士論文(未出版)。
吳湘湄(2019)。融合STEAM教育模式之幼兒音樂課程設計。國立清華大學碩士論文(未出版)。
吳紹群(2020)。中小學教師參與博物館STEAM教育推廣活動之研究-以故宮STEAM教師工作坊為例。博物館學季刊,34(3),83-105。
李奉儒(2006)。P.Freire批判教學論的探索與反思。載於李錦旭、王慧蘭(主編),批判教育學:臺灣的探索(97-136頁)。臺北市:心理。
李昀珈(2019)。幼兒園教師的STEM課程意識。國立臺東大學碩士論文
周育如(2018 )。幼兒 STEM 就在生活裡。親子天下取自:https://flipedu.parenting.com.tw/article/4801
周梅雀(2004)。尋找心中的那朵玫瑰花:一趟教師課程意識的敘事探究之旅。國立臺灣師範大學教育研究所博士論文(未出版)
周梅雀(2006)。教師課程意識覺醒的社會解放潛力。課程與教學季刊,2006,9(4),67-78。
周淑惠(1999)。幼兒教材教法:統整性課程取向。臺北市:師大書苑。
周淑惠(2005)。鷹架引導策略。國教世紀,216,45-56。
周淑惠(2006)。幼兒園課程與教學:探究取向之主題課程。新北市:心理。
周淑惠(2008)。幼兒學習環境規劃新論。臺北市:新學林。
周淑惠(2017) 。STEM 教育自幼開始─幼兒園主題探究課程中的經驗,臺灣教育評論月刊,2017,6(9),169-176。
周淑惠(2017)。面向 21 世紀的幼兒教育: 探究取向主題課程。新北市:心理。
周淑惠(2021)。幼兒園 STEM 教育開展之常見問題。臺灣教育評論月刊。2021,10(10), 152-161
周淑惠(2018)。具 STEM 精神之幼兒探究課程紀實:「一起創建遊戲樂園」主題。新北市:心理。
周淑惠(2020)。幼兒STEM教育課程與教學指引。新北市:心理。
林永盛()。STEM教育融入幼兒園課程與教學之研究(未出版之博士論文)。國立臺灣師範大學人類發展與家庭學所。
林幼萍(2009)。建構理論對藝術人文教學的影響與實踐-- 以表演藝術賞析課程為例。興大人文學報,43,191-218
林玉惠(2019)。大學國語文教師「課程意識與教學實踐」之敘事探究—一位博士生兼任講師的自我敘說(未出版之博士論文)。國立東華大學中國語文學所
邱上真(2003)。Piaget認知發展理論與教學應用。載於張新仁編:學習與教學報:教育類,47(1),1-16。。
邱紹雯、許家齊、賓靜蓀(2017)。美感教育 ─STEAM 新素養二部曲。親子天下90, 78–107。
施宜煌、賴郁璇(2010)。「教師即陌生人」隱喻對教師教學的啟示。當代教育研究季刊,18(1),111-145。
洪雪玲(2007)。論教師課程批判意識及其在教學上的啟示。課程與教學,10(3),91-104。https://doi.org/10.6384/CIQ.200707.0091
洪振方、賴羿蓉(1997)。教師對以邏輯實證與後邏輯實證主義科學哲學觀建構之電化電池發展史教材的認識與抉擇。科學教育月刊, 5(3),347-390。
洪榮昭(2020)。臺北市幼兒STEAM教案彙編成果輯。台北:台北市政府教育局。
教育部(2017)。幼兒園教保活動課程大綱。台北:教育部。
教育部(2018)。十二年國民基本教育課程綱要國民中學暨普通型高級中等學校:科技領域。取自 https://www.naer.edu.tw/ezfiles/0/1000/attach/52 /pta_18529_ 8438379_ 60115.pdf
國家教育研究院課程與教學研究中心主編(2017)。十二年國民基本教育課程綱要:科技領域課程手冊初稿(更新第五版)。新北市:作者
胡幼慧主編(1996)。質性研究-理論、方法及本土女性研究實例。台北:巨流。
范斯淳、游光昭(2016)。科技教育融入 STEM 課程的核心價值與實踐。教育科學研究期刊,61-2 ,153–183。doi: 10.6209/JORIES.2016.61(2).06
郭木山(2011)。國小教師教學生活世界宰制與覺醒。臺灣教育社會學研究,11(2),87-127。http://www.edubook.com.tw/OAtw/File/PDf/72824.pdf
郭重吉(1996)。建構論:科學哲學的省思。教育研究雙月刊,第49期。
馮朝霖(1996)。吳振賢採訪(1996)。建構主義之哲學觀點與啟示-專訪政大教育系馮朝霖教授。教育研究雙月刊,第49期。
陳正乾 (1995)。從維高斯基的理論來討論其對幼兒教育的應用。教育資料與研究,4,14-19
陳向明(2002)。社會科學質的研究。台北:五南出版社。
陳伯璋(1990)。教育研究方法的新取向—質的研究方法(增訂版)。台北:南宏
陳怡倩(2017)。從 STEAM 的 A 來看美國 STEAM 教育。香港美術教育期刊,第 1 期,頁 4–9。
陳玉婷(2022)原住民族文化融入幼兒STEAM教 設計之探究。台灣教育研究期刊,2022,3(4),157-175
陳品妤(2020)。運用STEM教育與積木建構提升幼兒科學探究能力之歷程。國立臺東大學碩士論文
陳芬芳(2019)。應用專題導向在生物與環境單元的設計與教學對學生STEAM的學習成效(未出版之碩士論文)。國立臺北教育大學,臺北市。
陳淑芳、江麗莉、詹文娟、簡淑真、鄭秋平(2004)。幼兒基本科學能力指標之研究(II)。行政院國家科學委員會專題研究成果報告(編號:NSC92-2511-S-143-006),未出版
陳寧容(2006)。兩位小琉球幼教師課程意識與實踐之研究(未出版之博士論文)。國立屏東教育大學教育行政研究所,屏東縣。
陳瑩(2015)。STEAM 教育,玩的就是學科「跨界」。擷取自 https://read01.com/mQGokP.html#.WZp7x_gjGzc
陳淑敏(2001)。幼稚園建構教學:理論與實務。台北市:心理。
陳淑敏(2002)。建構教學對幼兒科學知識學習之影響。教育與心理研究,25,401-430。
陳淑敏(2018)。幼兒科學教育探究取向。心理。
郭玉霞(1997)。教師的實際知識。高雄:高雄復文
黃純敏、程玉秀、林秀珍 (2004)。國中英語教師課程意識研究:九年一貫課程之回應。英語教學,28 (4),21-44
黃怡婷(2021)。以 STEAM 建構幼兒創意數學遊戲之個案研究。國立臺中教育大學碩士論文
黃瑞琴(1991)。質的教育研究方法。心理。
游志弘、林育慈、陳湘庭、吳正己(2019)。應用三維列印於STEAM課程對創造力的影響。數位學習科技期刊,11(4),1-24。臺灣教育評論月刊,2021,10(5),頁 115-119
詹志禹(1996)。認識與知識:建構論VS接受觀。教育研究雙月刊,第49期。
湯維玲(2019)。探究美國STEM與STEAM教育的發展。課程與教學,22(2),49-77。
張斯寧(2007)。建構主義取向的幼兒課程與教學-以台中市愛彌兒幼兒園探究課程為例。心理。
溫明麗(2003)。詮釋典範與教育研究,發表於教育研究方法論學術研討會
楊龍立(1998)。建構教學的研究。台北市立師院學院學報,第29期:26頁。
葉栢維(2017)。STEAM理論融入國小科技實作的活動設計:橡皮筋動力車向前衝。科技與人力教育季刊,4(1),63-75。
趙慧臣、周昱希、李彥奇、劉亞同、文潔(2017)。跨學科視野下“工匠型”創新人才的培養策 略 ─ 基於美國 STEAM 教育活動設計的啟示 。 擷取自 https://www.jianshu.com/p/e42188a428c4
趙慧臣、陸曉婷(2016)。開展 STEAM 教育,提高學生創新能力 ─訪美國 STEAM教育知名學者格雷特‧亞克門教授。開放教育研究,第 22 卷第 5 期,頁 4–10。doi: 10.13966/j.cnki. kfjyyj.2016.05.001
齊力(2003)。質性方法概論。輯於齊力、林本炫(主編)。質性研究方法與資料分析。南華教育社會學研究所出版。
廖婉雯(2020)。國小教師進行服務學習之課程意識探究。教育理論與實踐學刊 ,42,55-78。DOI: 10.7038/JETP.202012_(42).0003
甄曉蘭、曾志華(1997)建構教學理念的興起與應用。國民教育研究學報,第3期:194~195頁。
甄曉蘭(2000)。批判俗民誌及其在教育研究上的應用。載於中正大學教育
甄曉蘭(2003)。教師的課程意識與教學實踐。教育研究集刊,49(1),63-94。
甄曉蘭(2004)。課程理論與實務-解構與重建。台北:高等教育。
鄭明長(2005)。教師實務知識與專業成長。教育科學期刊,5(2),126-137。https://doi.org/10.6388/JES.200512.0126
蕭琬尹(2020)。幼兒園學習區STEAM教學歷程研究。國立屏東大學碩士論文。
羅嘉珍(2020)。幼兒園教師藉由自由遊戲促進幼兒STEAM素養之個案研究。國立臺中教育大學碩士論文
潘世尊(2003)。建構主義學習理論與教學應用。載於張新仁(主編),學習與教學新趨勢(307-333 頁)。台北市:心理
賓靜蓀(2017)。5 大精神,培養 STEAM 新素養。擷取自 https://flipedu.parenting.com.tw/article/3393
歐用生(2003)。誰能不在乎課程理論?---教師課程理論的覺醒。載於國立教育資料館(主編)教育集刊,28,373-387。
滕守堯(1995)。對話理論。臺北市:智揚文化
潘淑滿(2003)。質性研究—理論與應用。台北:心理。
潘麗珠、王秀玲(2003)。國中教師課程意識與教學實踐之研究—以國語文教師為例。行政院國家科學委員會專題研究成果報告
蔡釋鋒(2016)。STEAM 課程統整模式運用於國中生活科技教學對於學生知識整合應用之研究(未出版碩士論文)。國立高雄師範大學,高雄,台灣。
論文集,國立台灣師範大學主辦,2005 年4 月19-20 日。85-107 頁。
簡淑真(1998)。建構論及其在幼兒教育上的應用。課程與教學季刊,1卷3期。
簡淑真(2020)。臺北市幼兒STEAM教案彙編成果輯。台北:台北市政府教育局。
簡淑真、陳淑芳、李田英(2002)。建構取向幼兒科學教學之實施研究。(專案研究成果報告,編號:NSC-90-2511-S-003-024)
盧秀琴、洪榮昭、陳芬芳(2019)。設計STEAM課程的協同教學-以「感控式綠建築」為例。教育學報,47(1),113-133。
盧秀琴、馬士茵(2019)。設計STEAM課程培養國小學生的STEAM素養:以「動物模仿獸」為例。教育科學研究期刊,64(3),85-118。
盧秀琴、賴淑菁(2020)。使用6E教學策略教導國小學生製作「電磁車」專題以培養STEAM素養。中等教育,71(1),10-28。
盧姵綺(2019)。STEAM跨領域美感教育專題教學設計之探究。藝術教育研究,37,49-82。
鍾怡靜(2015)。幼兒園課程即自傳文本-我的幼教課程意識與教學實踐研究(未出版之博士論文)。國立中山大學教育研究所,高雄市。
簡良平(2004)。教師即課程決定者—課程實踐的議題。課程教學季刊,7(2),95-114。
魏俊陽(2020)。一位國小教師的課程意識與國語文教學實踐之旅(未出版之博士論文)。國立臺灣師範大學教育學院課程與教學研究所。
魏敏而、辛靜婷(2022)。有效促進幼兒 STEM 學習之教學策略。台灣教育研究期刊,2022,3(3),153-166
貳、 外文部分
Anne Jolly(2012). 12 Steps to Great STEM Lessons. Retrieved from https://www.middleweb.com/4328/12-steps-to-great-stem-lessons/
Ayres, C. (2011). Getting STEAM in Rhode Island. Retrieved from https://www.core77.com/posts/20692/getting-steamy-in-rhode-island-20692
Baeten, M., & Simons, M. (2016). Student teachers’ team teaching: How do learners in the classroom experience team-taught lessons by student teachers? Journal of Education for Teaching, 42(1), 93–105. doi: 10.1080/02607476.2015.1135226
Bartolome, L. I. (1994). Beyond the Methods Fetish: Toward a Humanizing Pedagogy. Harvard Educational Review, 64(2), 173-194.
Barbre, J. G. (2017). Baby steps to STEM: Infant and toddler science, technology engineering, and math activities. St. Paul, MN: Redleaf Press.
Blank, Jolyn and Lynch, Stefanie, "The Design Process: Engineering Practices in Preschool" (2018). Teaching and Learning Faculty Publications. 106. https://digitalcommons.usf.edu/tal_facpub/106
Bybee, R. W., & McCrae, B. J. (2009). PISA science 2006: Implications for science teachers and teaching. Arlington, VA: NSTA Press.
Bybee, R. W. (2010). Advancing STEM Education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30-35. https://eric. ed.gov/?id=EJ898909
Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. Arlington, VA:NSTA Press.
Clark, R. E. (2009). How much and what type of guidance is optimal for learning from instruction? In S. Tobias & T. M. Duffy (Eds.), Constructivist instruction: Success or failure? (pp. 158–183). Routledge/Taylor & Francis Group.
Connor, A. M., Karmokar, S., & Whittington, C. (2015). From STEM toSTEAM: Strategies for enhancing engineering & technology education.International Journal of Engineering Pedagogies, 5(2), 37–47.
Choi, J.-H., Choi, H.-M., & Park, J. (2018). Development and application of STEAM education program using the Lego Mind-storms robot. Journal of Science Education, 42(1), 1-11. https://doi.org/10.21796/jse.2018.42.1.1
Chin, C. (2007). Teacher questioning in science classrooms: Approaches that stimulate productive thinking. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 44(6), 815-843.
Copple, C., & Bredekamp, S. (2009). Developmentally appropriate practice: In early childhood programs. Washington, DC: National Association for the Education of Young Children.
Costantino, T. E. (2002). Problem-based learning: A concrete approach to teaching aesthetics. Studies in Art Education, 43(3), 219–231.
Costantino, T. (2018). STEAM by another name: Transdisciplinary practice in art and design education. Arts Education Policy Review, 119(2), 100-106. https://doi.org/10.1080/10632913.2017.1292973
DeJarnette, N. K. (2018). Implementing STEAM in the early childhood Description-11Nov2015.pdf classroom. European Journal of STEM Education, 3(3), 18. https://doi.org/10.20897/ejsteme/3878
English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(1), 3. https:// doi.org/10.1186/s40594-016-0036-1
English, L. D. (2017). Advancing elementary and middle school STEM education. International Journal of Science and Mathematics Education, 15(1), 5-24.
English, L. D. (2018). An introduction to young children’s potential. In L. English, & T. Moore (Eds.), Early engineering learning (pp. 1-5). Springer. https://doi.org/10.1007/978-981-10-8621-2_1
English, L. (2018). Engineering education in early childhood: Reflections and future directions. In L. English, & T. Moore (Eds.), Early engineering learning (pp. 273-284). Springer. https://doi.org/10.1007/978-981-10-8621-2_13
Erin, H., Yuenjung, J., Soo Young, H., &Anna, B.(2021)Teacher Questioning Practices in Early Childhood Science Activities. Early Childhood Education Journal (2021) 49:375–384. https://doi.org/10.1007/s10643-020-01075-z
Fang, N. (2013). Increasing high school students’ interest in STEM education through
Feldman, A., Sternheim, M., & Adams, B. (2008). NSTA presentation: STEM RAYS. Retrieved from http://umassk12.net/rays/dissemination/NSTA.ppt
Fleer, M. (2021). How an educational experiment creates motivating conditions for children to role-play a child-initiated PlayWorld. Oxford Review of Education. Advance online publication.
Freire, P. (1970). Pedagogy of the oppressed. NY: Herder and Herder.
Freire, P. (1973). Education for critical consciousness. NY: Continuum.
Freire, P. (1985) The politics of education,culture,power,and liberation. South Hadley,
Giroux, H. A. (1992). Border crossing: Cultural workers and the politics of education.
Glăveanu, V. P. (2018). Educating which creativity?. Thinking Skills and Creativity, 27, 25-32.
Greene, M. (1973). Teacher as stranger: Education philosophy for the modern age. CA:Wadsworth.
Grundy, S. (1987). Curriculum: Product or praxis. Philadelphia, PA: Glamer Press.
Harris, A. & de Bruin, L. (2017). Steam education: Fostering creativity in and beyond Harvard Educational Review, 57(1), 1-22.
Harris, K., Crabbe, J. J., & Harris, C. (2017). Teacher discourse strategies used in Kindergarten inquiry-based science learning. Asia-Pacific Forum on Science Learning and Teaching, 18(2), 1-30.
Hansel, R. R. (2015). Bringing blocks back to the kindergarten classroom. YC Young Children, 70(1), 44-51. https://search.proquest. com/docview/1657333020/fulltext/9C28D8A9C78B4D77PQ/1?accountid=14228
Helm, J. H., & Katz, L. G. (2016).Young investigators: The project approach in the early years (3rd ed.).New York: Teachers College.
Herro, D. and Quigley, C. (2016). Innovating with STEAM in middle school classrooms: remixing education", On the Horizon, 24 (3),190-204. https://doi.org/10.1108/OTH-03-2016-0008
Herro, D., & Quigley, C. (2016). Exploring teachers’ perceptions of STEAM teaching through professional development: Implications for teacher educators. Professional Development in Education, 43(3), 1-23. https://doi.org/10.1080/19415257.2016.1205507
Herschbach, D. R. (2011). The STEM initiative: Constraints and challenges. Journal of STEM Teacher Education, 48(1), 96–122. doi: 10.30707/JSTE48.1Herschbach
Henriksen, D. (2014). Full STEAM ahead: Creativity in excellent STEM teaching practices. The STEAM Journal, 1(2), Article 15, 1-9.
Henriksen, D. (2017). Creating STEAM with design thinking: Beyond STEM and arts integration. The STEAM Journal, 3(1), 11.
Hill, J. R. & Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of resource-based learning. Educational Technology Research and Development, 49(3), 37–52.
Hong, J. C., Hwang, M. Y., Szeto, E., Tai, K. H., & Tsai, C. R. (2016). Positive affect relevant to epistemic curiosity to reflect continuance intention to join a hands-on making contest. Eurasia Journal of Mathematics, Science and Technology Education, 12(9), 2267–2279. doi: 10.12973/eurasia.2016.1276a http://dx.doi.org/10.3991/ijep.v5i2.4458
Hong, J. C., Ye, J. H., Ho, Y. J., & Ho, H. Y. (2020). Developing an inquiry and hands-on teaching model to guide steam lesson planning for kindergarten children. Journal of Baltic Science Education, 19(6), 908-922. https://doi.org/10.33225/jbse/20.19.908
Jamil, F. M., Linder, S. M., & Stegelin, D. A. (2018). Early childhood teacher beliefs about STEAM education after a professional development conference. Early Childhood Education Journal, 46(4), 409-417.
Hoorm, J. V., Nourot, B. S., Scales, B., & Alward, K. (2011). Play at the center of the curriculum (5th ed.). Upper Saddle River, NJ: Pearson
Hsin, C.-T., & Wu, H.-K. (2011). Using scaffolding strategies to promote young children’s scientific understandings of floating and sinking. Journal of Science Education and Technology, 20(5), 656-666.
Hsin, C.-T., Wu, H.-K., Luu, D. T &. Wei, M.-E.( 2024): Fostering young children’s scientific practices in urban and Indigenous areas: an investigation of instructional strategies, International Journal of Science Education, DOI:10.1080/09500693.2024.2343437
Krajcik, J. S., & Czerniak, C. M. (2018). Teaching science in elementary and middle school: A project-based learning approach. New York: Routledge.
Jolyn, B., & Stefanie, L., (2018).The Design Process: Engineering Practices in Preschool. Young Children, 73( 4), p. 89-3. https://digitalcommons.usf.edu/tal_facpub/106
Kim, H.-R., & Choi, S.-Y. (2019). The development and application of the SW-STEAM program by utilizing Ozobot coding for elementary science class. Journal of Korean Elementary Science Education, 38(2), 234-243. https://doi.org/10.15267/keses.2019.38.2.234
Kim, S.-W., Chung, Y.-L., Woo, A.-J., & Lee, H.-J. (2012). Development of a theoretical model for STEAM education. Journal of the Korean Association for Science Education, 32(2), 388-401. https://doi.org/10.14697/jkase.2012.32.2.388
Kim, P. W. (2016). The wheel model of STEAM education based on traditional Korean scientific contents. Eurasia Journal of Mathematics, Science & Technology Education, 12(9), 2353-2371. doi: 10.12973/eurasia.2016.1263a
Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75-86.
Klein, S. S., & Sherwood, R. D. (2005). Gender equitable curricula in high school science and engineering. Retrieved from https://peer.asee.org/gender-equitable-curricula-in-high-school science-and-engineering.pdfhttp://dx.doi.org/10.1177/001872674700100103
Lee, Y., & Kinzie, M. B. (2012). Teacher question and student response with regard to cognition and language use. Instructional Science, 40(6), 857–874. https://doi.org/10.1007/s11251-011-9193-2
Liao, C. (2016). From interdisciplinary to transdisciplinary: An arts-integrated approach to STEAM education. Art Education, 69(6), 44-49. https://doi.org/10.1080/00043125.2016.1224873
Long, R. L., II, & Davis, S. S. (2017). Using STEAM to increase engagement and literacy across disciplines. The STEAM Journal, 3(1), Article 7. doi: 10.5642/steam.20170301.07
Lou, S. J., Liu, Y. H., Shih, R. C., & Tseng, K. H. (2011). The senior high school students’ learning behavioral model of STEM in PBL. International Journal of Technology and Design Education,21(2), 161–183. doi: 10.1007/s10798-010-9112-x MA: Bergin and Garvey.
Maeda, J. (2013). STEM + Art = STEAM. The STEAM Journal, 1(1), Article 34. doi:
Matlen, B. J., & Klahr, D. (2013). Sequential effects of high and low instructional guidance on children’s acquisition of experimentation skills: Is it all in the timing. Instructional Science, 41(3), 621-634. NY: Routledge.
Massachusetts Department of Education (2003)Guidelines for Preschool Learning Experiences
McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students' construction of scientific explanations by fading scaffolds in instructional materials. Journal of the Learning Sciences, 15(2), 153-191.
McClure, E. (2017). More than a foundation: young children are capable STEM learners. YC Young Children, 72(5), 83–89.
Moomaw, S. (2013). Teaching STEM in the early years: Activities for integrating science, technology, engineering, and mathematics. Minnesota, MN: Redleaf Press.
Museum of Science, Boston. (2018). “The Engineering Design Process.” Engineering isElementary. https://www.eie.org/overview/engineering-design-process
National Art Education Association [NAEA] (2016). Using art education to build a stronger workforce. Accessed December 10, 2017, at https://arteducators-prod.s3. amazonaws.com/documents/535/ff8bfae5-6b4f-4352-b900-4fc1182ad2b1.pdf?1455134278.
National Coalition for Core Art Standards [NCCAS] (2013). The national core arts standards: A conceptual framework for arts learning. Retrieved April 1, 2018, fromhttps://www.nationalartsstandards.org/sites/default/files/NCCAS%20%20Conceptual%20Framework_0.pdf.
National Research Council. (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press.
National Governors Association Center for Best Practices, Council of Chief State School Officers (2010). Common core state standards: Mathematics standards. Retrieved June 26, 2018 fromhttp://www.corestandards.org/Math/.
Next Generation Science Standards (2013). Next generation science standards: For states, by states. Retrieved June 26, 2018 fromhttp://www.nextgenscience.org/searchstandards.
Olds, S. A., Patel, C. D., Yalvac, B., Kanter, D. E., & Goel, N. (2004). Developing a standards based K–12 engineering curricula through partnerships with university students and industry. Retrieved from https://peer.asee.org/developing-a-standards-based-k-12-engineering curriculua-through-partnerships-with-university-students-and-industry.pdf
Perignat, E., & Katz-Buonincontro, J. (2019). STEAM in practice and research: An integrative literature review. Thinking Skills and Creativity, 31, 31-43.
Quigley, C. F., & Herro, D. (2016). “Finding the joy in the unknown”: Implementation of STEAM teaching practices in middle school science and math classrooms. Journal of Science Education and Technology, 25(3), 410–426.
Quigley, C. F., Herro, D., & Jamil, F. M. (2017). Developing a conceptual model of STEAM teaching practices. School Science and Mathematics, 117(1-2), 1–12.
Quigley, C. F., & Herro, D. (2016). “Finding the joy in the unknown”: Implementation of STEAM teaching practices in middle school science and math classrooms. Journal of Science Education and Technology, 25(3), 410–426.
Rabkin, N., & Hedberg, E. C. (2011). Arts education in America: What the declines mean for arts participation. Based on the 2008 survey of public participation in the arts. Research report# 52. National Endowment for the Arts.
Rhode Island School of Design. (2018). STEM to STEAM. Retrieved from http://stemtosteam.org/
Riordan, C. M., & Criffeth, R. W. (1995). The opportunity for friendship in the workplace: An underexplored construct. Journal of Business and Psychology, 10, 141-154.
Robinson, B., & Schaible, R. M. (1995). Collaborative teaching: Reaping the benefits. College Teaching, 43(2), 57–59.
Robinson, H. A. (1994). The ethnography of empowerment: The transformative power of classroom interaction. London, England: Routledge.
Rolling, J. H., Jr (2016). Reinventing the STEAM engine for art + design education. Art Education, 69(4), 4–7.
Root-Bernstein, R. (2015). Arts and crafts as adjuncts to STEM education to foster creativity in gifted and talented students. Asia Pacific Education Review, 16(2), 203–212.
Samarapungavan, A., Patrick, H., & Mantzicopoulos, P. (2011). What kindergarten students learn in inquiry-based science classrooms. Cognition and Instruction, 29(4), 416-470.
Schroeder, C. M., Scott, T. P., Tolson, H., Huang, T. Y., & Lee, Y. H. (2007). A meta‐ analysis of national research: Effects of teaching strategies on student achievement in science in the United States. Journal of Research in Science Teaching, 44(10), 1436-1460.
Sharapan, H. (2012). From STEM to STEAM: How early childhood educators can apply Fred Rogers’ approach. YC Young Children, 67(1), 36.
Smith, C. E., & Paré, J. N. (2016). Exploring klein bottles through pottery: A STEAM investigation. Mathematics Teacher, 110(3), 208–214.
Smith, J. K., & Smith, L. F. (2010). Educational creativity. In J. C. Kaufman, & R. J. Sternberg (Eds.). The Cambridge handbook of creativity (pp. 250–264). New York: Cambridge University Press.
Smith, L. (2015). House passes bipartisan STEM education act. Retrieved from https://science.house.gov/news/press-releases/house-passes-bipartisan-stemeducation-act
Smith, L. (2017). President signs American innovation and competitiveness act into law. Retrieved from https://science.house.gov/news/press-releases/presidentsigns-american- innovation-and-competitiveness-act-law
Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform.
Stohlmann, M., Moore, T., & Roehrig, G. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research (J-PEER), 2(1), 28–34. https://doi.org/10.5703/1288284314653
Stone, C. A. (1998). The metaphor of scaffolding: Its utility for the field of learning disabilities. Journal of Learning Disabilities, 31(4), 344–364. https://doi.org/10.1177/002221949803100404
Stix, A., & Hrbek, F. (2006). Teachers as classroom coaches, chapter 11. The nine steps of project-based learning. Retrieved from www.ascd.org/publications/ books/106031/chapters/The_Nine_Steps_of_Project-Based_Learning.aspx.
Sousa, D. A., & Pilecki, T. (2013). From STEAM to STEAM: Using brain-compatible strategies to integrate the arts. Thousand Oaks, CA: Corwin.
Stohlmann, M., Moore, T., & Roehrig, G. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research (J-PEER), 2(1), 28–34. https://doi.org/10.5703/1288284314653
Toulmin, C., & Groome, M. (2007). Building a science, technology, engineering, and math agenda.Retrieved from ERIC database. (ED496324)
Texley, J; Ruud, R M.(2018)Teaching STEM Literacy: A Constructivist Approach for Ages 3 to 8 .Redleaf Press
Watters, J. J., & Diezmann, C. M. (2013). Models of community partnerships for fostering student interest and engagement in STEM. Journal of STEM Education: Innovations and Research, 14(2), 47–55.
Weisberg D. S., Hirsh-Pasek, K., Golinkoff ,R. M., Kittredge, A.K.,& Klahr,D.(2016). Guided Play: Principles and Practices.Current Directions in Psychological Science,
Wynn, T., & Harris, J. (2012). Toward a STEM + Arts curriculum: Creating the teacher team. Art Education, 65(5), 42–47. doi:10.1080/00043125.2012.11519191
Yakman, C. G. (2013). STEAM Education Program Description.Retrieved from https://steamedu.com/wp-content/uploads/2014/12/STEAM-Education-Program-Description-11Nov2015.pdf
Yakman, G. (2015). STEAM about us, educators. Retrieved from http://steamedu. com/about-us/educators
Young, M. V., House, A., Wang, H., Singleton, C., & Klopfenstein, K. (2011, May). Inclusive STEM schools: Early promise in Texas and unanswered questions. Paper prepared for the National Academies Board on Science Education and Board on Testing and Assessment for “Highly Successful STEM Schools or Programs for K-12 STEM Education: A Workshop”, Washington, DC.
V.i YLIVERRONEN, M. RÖNKKÖ & K. KANGAS(2020)。Learning everyday technologies through playful experimenting and cooperative making in pre-primary education。www.FormAkademisk.org 1 Vol.13 Nr.4, 2020, Art. 1, 1-10 https://doi.org/10.7577/formakademisk.4198
Zarske, M. S., Kotys-Schwartz, D., Sullivan, J. F., & Yowell, J. L. (2005). Creative engineering: Helping ninth-grade students discover engineering. Retrieved from https://peer.asee.org/creative-engineering-helping-ninth-grade-students-discover-engineering.pd
Zhbanova, K. S. (2019). Editorial: Developing creativity through STEM subjects Integrated with the arts. Journal of STEM Arts, Crafts, and Constructions, 4(1), 1-15.