簡易檢索 / 詳目顯示

研究生: 陳怡廷
Yi-Ting Chen
論文名稱: AMPK與eNOS基因多形性和耐力運動表現之關聯
Association of AMPK and eNOS gene polymorphisms with endurance exercise performance
指導教授: 謝伸裕
Hsieh, Shen-Yu
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 68
中文關鍵詞: 葡萄糖吸收能量代謝
英文關鍵詞: glucose uptake, energy metabolism
論文種類: 學術論文
相關次數: 點閱:166下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 運動、缺氧或肌肉收縮會導致腺苷單磷酸活化蛋白激酶(AMP-activated protein kinase, AMPK)活化而調控細胞代謝途徑之運作。AMPK能透過磷酸化內皮型一氧化氮合成酶 (endothelial nitric oxide synthase, eNOS) 產生一氧化氮 (nitric oxide, NO) 並經由下游路徑刺激葡萄糖吸收。AMPK或eNOS基因變異也可能會影響能量代謝調控,但目前與運動方面的相關研究極少數。目的:探討耐力型運動員PRKAA2 (rs857155)、eNOS G894T與eNOS intron 4 a/b基因型分佈和一般民眾是否有差異。方法:採集國內103位曾獲得全國性比賽前三名之耐力型運動員(游泳、划船、自行車、足球、橄欖球、網球等種類)及200位一般民眾之血液DNA檢體,以聚合酶連鎖反應-限制片段長度多形性 (PCR-RFLP) 進行PRKAA2 (rs857155) 基因型分析;eNOS intron 4 a/b以聚合酶連鎖反應 (PCR) 進行基因型分析;eNOS G894T以引子展延法 (primer extension) 於變性高效能液相層析系統 (denaturing high performance liquid chromatography) 進行基因型分析。最後以SPSS 12.0統計套裝軟體進行χ2-test,統計顯著定為α = .05。結果:網球及划船運動員帶有PRKAA2 (rs857155) C對偶基因者顯著高於對照組。eNOS intron 4 a/b基因型及對偶基因分佈頻率在優秀耐力型運動員 (aa/ab/bb=2.9/26.2/70.9%;a/b=16.0/84.0%) 與對照組間 (aa/ab/bb=1.5/15.5/83.0%;a/b=9.3/90.8%) 有顯著差異;男性優秀耐力型運動員與對照組之eNOS intron 4 a/b基因型及對偶基因分佈頻率亦有明顯差異;自行車及划船運動員帶有eNOS intron 4 a對偶基因者顯著高於對照組。eNOS intron 4 a/b與eNOS G894T之間有連鎖不平衡存在,優秀耐力型運動員帶有a對偶基因 (aa+ab) 與T對偶基因 (GT+TT) 分佈頻率顯著高於對照組。結論:eNOS intron 4 a/b基因多形性與耐力運動表現相關聯,可能是選拔優秀耐力型運動員的候選基因。

    AMPK can be activated by exercise, muscle contraction and hypoxia to regulate various cellular metabolic pathways. AMPK is able to stimulate glucose uptake in skeletal muscle by phosphorylating eNOS and increase NO production. Also, genetic variants of AMPK and eNOS may affect metabolic regulation. However, there were little studies connect AMPK and eNOS to exercise performance. Purpose: To investigate the difference of PRKAA2 and eNOS gene polymorphism in elite endurance athletes and healthy control group. Methods: 103 endurance athletes (swimming, rowing, cycle, soccer, rugby, and tennis) who had won third place and above in national competitions were as the experimental group. The control group was 200 healthy people drawn from Taiwanese general population. The genotype of PRKAA2 (rs857155) was determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), the genotype of eNOS intron 4 a/b was determined by polymerase chain reaction (PCR), and the genotype of eNOS G894T was determined by primer extension with denaturing high performance liquid chromatography (DHPLC). Data were analyzed with SPSS software version 12.0. χ2-test was employed to evaluate the difference (α= .05). Results: The frequency of the PRKAA2 (rs857155) C allele was significantly higher in tennis and rowing athletes as compared to the controls. The distribution of eNOS intron 4 a/b genotype and allele frequencies was significantly different between the athletes (aa/ab/bb = 2.9%/26.2%/70.9%; a/b = 16.0%/84.0%) and the controls (aa/ab/bb = 1.5%/15.5%/83.0%; a/b = 9.3%/90.8%), this phenomenon was also seen in male athletes. There was also a significant difference between the cycle athletes and the controls as well as the rowing athletes and the controls, with more tennis and rowing athletes carrying the a allele. Significant linkage disequilibrium was found between eNOS intron 4 a/b and eNOS G894T. The frequency of the a allele (aa+ab) and the T allele (GT+TT) combination was significantly higher in the athletes than in the controls. Conclusion: eNOS intron 4 a/b is associated with endurance exercise performance, and it might be a candidate gene for searching elite endurance athletes.

    中文摘要 .................................................. і 英文摘要 .................................................і і 謝誌 ................................................. і і і 目次 .................................................... іv 表次 .................................................... vі 圖次 ....................................................vіі 第壹章 緒論 ............................................... 1 一、問題背景 .............................................. 1 二、研究目的 .............................................. 3 三、研究假設 .............................................. 3 四、名詞操作性定義 ......................................... 4 五、研究範圍 .............................................. 4 六、研究限制 .............................................. 4 七、研究的重要性 ........................................... 4 第貳章 相關文獻探討 ........................................ 5 一、AMPK之分子結構與活化機制 ................................ 5 二、NOS .................................................. 6 三、AMPK與eNOS之醣類代謝調控 ............................... 7 四、AMPK與eNOS基因多形性之相關研究 ......................... 10 五、本章總結 ............................................. 13 第参章 研究方法與步驟 ..................................... 14 一、受試對象 ............................................. 14 二、實驗設計與研究變項 .................................... 15 三、實驗流程 ............................................. 16 四、實驗方法與步驟 ........................................ 17 五、實驗儀器 ............................................. 25 六、統計分析 ............................................. 25 第肆章 結果 .............................................. 26 一、PRKAA2 (rs857155) 基因多形性之分佈 .................... 26 二、eNOS G894T基因多形性之分佈 ............................ 30 三、eNOS intron 4 a/b基因多形性之分佈 ..................... 33 四、PRKAA2與eNOS基因多形性之合併分析 ....................... 37 第伍章 討論與結論 ......................................... 40 一、PRKAA2 (rs857155) 基因多形性與運動表現 ................. 40 二、eNOS intron 4a/b基因多形性與運動表現 ................... 42 三、eNOS G894T基因多形性與運動表現 ......................... 45 四、結論 ................................................. 47 參考文獻 ................................................. 48 中文部份 ................................................. 48 英文部分 ................................................. 48 附錄一、受試者告知同意書 ................................... 56 個人小傳 ................................................. 58

    中文部分
    林正常、蔡崇濱、劉立孙、林政東、吳忠芳 (2003)。運動訓練法。臺北市:藝軒。
    汪茂榮、李蓉、張素華、任偉、汪志紅、龔莉琳等 (2007)。AMPKα2基因多態性與2型糖尿病相關性研究。重慶醫科大學學報,32(11),1131-1133。

    英文部分
    Ai, H., Ralston, E., Lauritzen, H. P., Galbo, H., & Ploug, T. (2003). Disruption of microtubules in rat skeletal muscle does not inhibit insulin-or contraction stimulated glucose transport. American Journal of Physiology. Endocrinology and Metabolism, 285(4), E836-E844.

    Andersson, L. (2003). Identification and characterization of AMPK gamma 3 mutations in the pig. Biochemical Society Transactions, 31(Pt 1), 232-235.

    Aschenbach, W., Sakamoto, k., & Goodyear, L. (2004). 5’adenosine monophosphate- activated protein kinase, metabolism and exercise. Sports Medicine, 34(2), 91-103.

    Balon, T., & Nadler, J. (1997). Evidence that nitric oxide increases glucose transport in skeletal muscle. Journal of Applied Physiology, 82(1), 359-363.

    Barnes, B. R., Marklund, S., Steiler, T. L., Walter, M., Hjalm, G., Amarger, V., et al. (2004). The 5’-AMP-activated protein kinase γ3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. The Journal of Biological Chemistry, 279(37), 38441-38447.

    Bergeron, R., Previs, S. F., Cline, G. W., Perret, P., Russell, RR 3rd., Young, L. H., et al. (2001). Effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese zucker rats. Diabetes, 50(5), 1076-1082.

    Bradley, S. J., Kingwell, B. A., & McConell, G. K. (1999). Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow during dynamic exercise in humans. Diabetes, 48(9), 1815-1821.

    Carling, D., & Hardie, D. G. (1989). The substrate and sequence specificity of the AMP- activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase. Biochimica et Biophysica Acta, 1012(1), 81-86.

    Cai, H., Wilcken, D. E., & Wang, X. L. (1999). The Glu-298-->Asp (894G-->T) mutation at exon 7 of the endothelial nitric oxide synthase gene and coronary artery disease. Journal of Molecular Medicine, 77(6), 511-554.

    Chen, Z. P., Mitchelhill, K. I., Michell, B. J., Stapleton, D., Rodriguez-Crespo, I., Witters, L., et al. (1999). AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Letters, 443(3), 285-289.

    Cleeter, M. W., Cooper, J. M., Darley-Usmar, V. M., Moncada, S., & Schapira, A. H. (1994). Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. FEBS Letters, 345(1), 50-54.

    Corton, J. M., Gillespie, J. G., & Hardie, D. G. (1994). Role of the AMP-activated protein kinase in the cellular stress response. Current Biology, 4(4), 315-324.

    Corton, J. M., Gillespie, J. G., Hawley, S. A., & Hardie, D. G. (1995). 5-Aminoimidazole-4- carboxamide ribonucleoside: a specific method for activating protein kinase in intact cells? European Journal of Biochemistry, 229(2), 558-565.

    Costford, S. R., Kavaslar, N., Ahituv, N., Chaudhry, S. N., Schackwitz, W. S., Dent, R., et al. (2007). Gain-of-function R225W mutation in human AMPKgamma3 causing increased glycogen and decreased triglyceride in skeletal muscle. Plos One, 2(9), e903.

    Davies, S. P., Helps, N. R., Cohen, P. T., & Hardie, D. G. (1995). 5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein
    kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Letters, 377(3), 421-425.

    Denninger, J. W., & Marletta, M. A. (1999). Guanylate cyclase and the NO/cGMP signaling pathway. Biochimica et Biophysica Acta, 1411(2-3), 334-350.

    Elbaz, A., Poirier, O., Moulin, T., Chedru, F., Cambien, F., & Amarenco, P. (2000). Association between the Glu298Asp polymorphism in the endothelial constitutive nitric oxide synthase gene and brain infarction. Stroke, 31(7), 1634-1639.

    Forstermann, U., Schmidt, H. H., Pollock, J. S., Sheng, H., Mitchell, J. A., Warner, T. D., et al. (1991). Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochemical Pharmacology, 42(10), 1849-1857.

    Fryer, L.G., Hajduch, E., Rencurel, F., Salt, I. P., Hundal, H. S., Hardie, D.G., et al. (2000). Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes, 49(12), 1978-1985.

    Furchgott, R. F., & Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288(5789), 373-376.

    Galanakis, E., Kofteridis, D., Stratigi, K., Petraki, E., Vazgiourakis, V., Fragouli, E., et al. (2008). Intron 4 a/b polymorphism of the endothelial nitric oxide synthase gene is associated with both type 1 and type 2 diabetes in a genetically homogeneous population. Human Immunology, 69(4-5), 279-283.

    Grassi, B., Hogan, M. C., Kelley, K. M., Aschenbach, W. G., Hamann, J. J., Evans, R. k., et al. (2000). Role of convective O(2) delivery in determining VO(2) on-kinetics in canine muscle contracting at peak VO(2). Journal of Applied Physiology, 89(4), 1293-1301.

    Hapmap。2009年7月1日,取自NCBI,http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=857155

    Hardie, D., & Hawley, S. (2001). AMP-activated protein kinase: The energy charge hypothesis revisited. Bioessays, 23(12), 1112-1119.

    Hardie, D. G. (2004). The AMP-activated protein kinase pathway - new players upstream and downstream. Journal of Cell Science, 117(23), 5479-5487.

    Hawley, S. A., Davison, M., Woods, A., Davies, S. P., Beri, R. K., Carling, D., et al. (1996). Characterization of the AMPactivated protein kinase kinase from rat liver, and identification of threonine-172 as the major site at which it phosphorylates and activates AMP-activated protein kinase. The Journal of Biological Chemistry, 271(44), 27879-27887.

    Hayashi, T., Hirshman, M. F., Kurth, E. J, Winder, W. W., & Goodyear, L. J. (1998). Evidence for 5’AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes, 47(8), 1369-1373.

    Hibi, K., Ishigami, T., Tamura, K., Mizushima, S., Nyui, N., Fujita, T., et al. (1998). Endothelial nitric oxide synthase gene polymorphism and acute myocardial infarction. Hypertension, 32(3), 521-526.

    Hickner, R., Fisher, J., Ehsani, A., & Kohrt, W. (1997). Role of nitric oxide in skeletal muscle blood flow at rest and during dynamic exercise in humans. The American Journal of Physiology, 273(1 Pt 2), H405-H410.

    Hingorani, A. D., Liang, C. F., Fatibene, J., Lyon, A., Monteith, S., Parsons, A., et al. (1999). A common variant of the endothelial nitric oxide synthase (Glu298-->Asp) is a major risk factor for coronary artery disease in the UK. Circulation, 100(14), 1515-1520.

    Hisamoto, K., Ohmichi, M., Kurachi, H., Hayakawa, J., Kanda, Y., Nishio, Y., et al. (2001). Estrogen induces the Akt dependent activation of endothelial nitric-oxide synthase in vascular endothelial cells. The Journal of biological chemistry, 278(5), 3459–3467.

    Holmes, B. F., Sparling, D. P., Olson, A. L., Winder, W. W., & Dohm, G. L. (2005). Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP- activated protein kinase. American Journal of Physiology. Endocrinology and Metabolism, 289(6), E1071-E1076.

    Hooper, W. C., Lally, C., Austin, H., Benson, J., Dilley, A., Wenger, N. K., et al. (1999). The relationship between polymorphisms in the endothelial cell nitric oxide synthase gene and the platelet GPIIIa gene with myocardial infarction and venous thromboembolism in African Americans. Chest, 116(4), 880-886.

    Horikoshi, M., Hara, K., Ohashi, J., Miyake, K., Tokunaga, K., Ito, C., et al. (2006). A polymorphism in the AMPKalpha2 subunit gene is associated with insulin resistance and type 2 diabetes in the Japanese population. Diabetes, 55(4), 919-923.

    Hou, L., Osei-Hyiaman, D., Yu, H., Ren, Z., Zhang, Z., Wang, B., et al. (2001). Association of a 27-bp repeat polymorphism in ecNOS gene with ischemic stroke in Chinese patients. Neurology, 56(4), 490-496.

    Hsieh, L. L., Liou, S. H., Chen, Y. H., Tsai, L. C., Yang, T., & Wu, T. N. (2000). Association between aminolevulinate dehydrogenase genotype and blood lead levels in Taiwan.
    Journal of Occupational and Environment. Medicine, 42(2), 151-155.

    Ignarro, L. J. (1989). Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circulation Research, 65(1), 1-21.

    Jorgensen, S. B., Viollet, B., Andreelli, F., Frosig, C., Birk, J. B., Schjerling, P., et al. (2004). Knockout of the α2 but not alpha1 5’-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. The Journal of Biological Chemistry, 279(2), 1070-1079.

    Kahn, B. B., Alquier, T., Carling, D., & Hardie, D. G. (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism, 1(1), 15-25.

    Li, J., Hu, X., Selvakumar, P., Russell, III R. R., Cushman, S. W., Holman, G. D., et al. (2004). Role of the nitric oxide pathway in AMPK-mediated glucose uptake and GLUT4 translocation in heart muscle. American Journal of Physiology. Endocrinology and Metabolism, 287(5), E834-E841.

    Loke, K. E., Laycock, S. K., Mital, S., Wolin, M. S., Bernstein, R., Oz, M., et al. (1999). Nitric oxide modulates mitochondrial respiration in failing human heart. Circulation, 100(12), 1291-1297.

    Merrill, G. M., Kurth, E., Hardie, D. G. & Winder, W. W. (1997). AICA riboside decreases malonyl-CoA and increases fatty acid oxidation in skeletal muscle of the rat. The American Journal of Physiology, 273 (6 Pt 1), E1107-E1112.

    Michel, T., & Feron, O. (1997). Nitric oxide synthases: which, where, how, and why? The Journal of Clinical Investigation, 100(9), 2146-2152.

    Milan, D., Jeon, J. T., Looft, C., Amarger, V., Robic, A., Thelander, M., et al. (2000). A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science, 288(5469), 1248-1251.

    Monin, G., Brard, C., Vernin, P., & Naveau, J. (1992). Effects of the RN− gene on some traits of muscle and liver in pigs. Proceedings of the 38th International Congress of Meat Science and Technology, Clearmont-Ferrand, France, 391-394.

    Mu, J., Brozinick, J., Valladares, O., Bucan, M. & Birnbaum, M. J. (2001). A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Molecular Cell, 7(5), 1085-1094.

    Naduad, S., Bonnardeaux, A., Lathrop, M., & Soubrier, F., (1994). Gene structure, polymorphism and mapping of the human endothelial nitric oxide synthase gene. Biochemical and Biophysical Research Communications, 198(3), 1027-1033.

    Nagata, D., Mogi, M., & Walsh, K. (2003). AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. The Journal of Biological Chemistry, 278(33), 31000-31006.

    Nathan, C., & Hibbs, J. B. (1991). Role of nitric oxide synthesis in macrophages antimicrobial activity. Current Opinion in Immunology, 3(1), 65-70.

    Park, J. E., Lee, W. H., Hwang, T. H., Chu, J. A., Kim, S., Choi, Y. H., et al. (2000). Aging affects the association between endothelial nitric oxide synthase gene polymorphism and acute myocardial infarction in the Korean male population. The Korean journal of Internal Medicine, 15(1), 65-70.

    Pulkkinen, A., Viitanen, L., Kareinen, A., Lehto, S., Vauhkonen, I., & Laakso, M. (2000). Intron 4 polymorphism of the endothelial nitric oxide synthase gene is associated with elevated blood pressure in type 2 diabetic patients with coronary heart disease. Journal of Molecular Medicine, 78(7), 372-379.

    Rankinen, T., Bray, M. S., Hagberg, J. M., Pérusse, L., Roth, S. M., Wolfarth, B., et al. (2006). The human gene map for performance and health-related fitness phenotypes: the 2005 update. Medicine and Science in Sports and Exercise, 38(11), 1863-1688.

    Roberts, C. K., Barnard, R. J., Jasman, A., & Balon, T. W. (1999). Acute exercise increases nitric oxide synthase activity in skeletal muscle. The American Journal of Physiology, 277(2 Pt 1), E390-E394.

    Roberts, C. K., Barnard, R. J., Scheck, S. H., & Balon, T. W. (1997). Exercise-stimulated glucose transport in skeletal muscle is nitric oxide dependent. The American Journal of Physiology, 273(1 Pt 1), E220-E225.

    Ruderman, N. B., Saha, A. K., Vavvas, D., & Witters, L. A. (1999). Malonyl-CoA, fuel sensing, and insulin resistance. American Journal of Physiology. Endocrinology and Metabolism, 276(1 pt 1), E1-E18.

    Rutter, G., Da Silva Xavier, G., & Leclerc, I. (2003). Roles of 5’-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. The Biochemical Journal, 375(Pt 1), 1-16.

    Sakamoto, K., McCarthy, A., Smith, D., Green, K. A., Grahame, H. D., Ashworth, A., et al. (2005). Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose
    uptake during contraction. The EMBO Journal, 24(10), 1810-1820.

    Saunders, C. J., Xenophontos, S. L., Cariolou, M. A., Anastassiades, L. C., Noakes, T. D., & Collins, M. (2006). The bradykinin beta 2 receptor (BDKRB2) and endothelial nitric oxide synthase 3 (NOS3) genes and endurance performance during Ironman Triathlons. Human Molecular Genetics, 15(6), 979-987.

    Scott, J. W., Hawley, S. A., Green, K. A., Anis, M., Stewart, G., Scullion, G. A., et al. (2004). CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. The Journal of Clinical Investigation, 113(2), 274-284.

    Shearer, J., Fueger, P. T., Vorndick, B., Bracy, D. P., Rottman, J. N., Clanton, J. A., et al. (2004). AMP kinase-induced skeletal muscle glucose but not long chain fatty acid uptake is dependent on nitric oxide. Diabetes, 53(6), 1429-1435.

    Thomson, D. M., Brown, J. D., Fillmore, N., Condon, B. M., Kim, H. J., Barrow, J. R., et al. (2007). LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle. American Journal of Physiology. Endocrinology and Metabolism, 293(6), E1572-E1579.

    Tso, A. W., Tan, K. C., Wat, N. M., Janus, E. D., Lam, T. H., & Lam K.S. (2006). Endothelial nitric oxide synthase G894T (Glu298Asp) polymorphism was predictive of glycemic
    status in a 5-year prospective study of Chinese subjects with impaired glucose tolerance. Metabolism: Clinical and Experimental, 55(9), 1155-1158.

    Wang, X. L., Mahaney, M. C., Sim, A. S., Wang, J., Wang, J., Blangero, J., et al. (1997). Genetic contribution of the endothelial constitutive nitric oxide synthase gene to plasma nitric oxide levels. Arteriosclerosis Thrombosis, and Vascular Biology,17(11), 3147-3153.

    Wang, X. L., Sim, A. S., Badenhop, R. F., McCredie, R. M., & Wilcken, D. E. (1996). A smoking-dependent risk of coronary artery disease associated with a polymorphism of the endothelial nitric oxide synthase gene. Nature Medicine, 2(1), 41-45.

    Winder, W. W., & Hardie, D. G. (1996). Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. The American Journal of Physiology, 270(2), E299-E304.

    Wolfarth, B., Bray, M. S., Hagberg, J. M., Perusse, L., Rauramaa, R., Rivera, M. A., et al. (2005). The human gene map for performance and health-related fitness phenotypes: the 2004 update. Medicine and Science in Sports and Exercise, 37(6), 881-903.

    Wolfarth, B., Rankinen, T., Mühlbauer, S., Ducke, M., Rauramaa, R., Boulay, M. R., et al. (2008). Endothelial nitric oxide synthase gene polymorphism and elite endurance athlete status: the genathlete study. Scandinavian Journal of Medicine and Science in Sports,18(4), 485-490.

    Xu, M., Li, X., Wang, J. G., Du, P., Hong, J., Gu, W., et al. (2005). Glucose and lipid metabolism in relation to novel polymorphisms in the 5'-AMP-activated protein kinase gamma2 gene in Chinese. Molecular Genetics and Metabolism, 86(3), 372-378.

    Yoon, Y., Song, J., Hong, S. H., & Kim, J. Q. (2000). Plasma nitric oxide concentrations and nitric oxide synthase gene polymorphisms in coronary artery disease. Clinical Chemistry, 46(10), 1626-1630.

    Young, M. E., Radda, G. K., & Leighton, B. (1997). Nitric oxide stimulates glucose transport and metabolism in rat skeletal muscle in vitro. The Biochemical journal, 322(Pt 1), 223-228.

    下載圖示
    QR CODE