研究生: |
陳巧穎 Chen, Chiao-Ying |
---|---|
論文名稱: |
B 細胞淋巴瘤基因啟動子區域中 DNA 四股結構之構型間轉換的單分子研究 Interconversion between G-quadruplex Conformations in B-cell Lymphoma 2 Promoter Region |
指導教授: |
李以仁
Lee, I-Ren |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | Bcl-2 、前致癌基因 、Pu39 、DNA 二級結構 、G4 結構 、單分子 、螢光共振能量轉移 |
英文關鍵詞: | Pu39, proto-oncogene, interconversion, single-molecule |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DC.055.2018.B05 |
論文種類: | 學術論文 |
相關次數: | 點閱:117 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
B 細胞淋巴瘤基因 2 (簡稱 Bcl-2) 在人體內是一負責控制細胞凋亡的前致癌基因,其過表達現象和人體多種癌症皆有高度的關聯性。在 Bcl-2 的啟動子 P1 區域上有一富含 G、C 的 39 個鹼基對的序列被指出會參與此基因的基因表達,名為 Pu39,且其在特定的鹽離子濃度與 pH 值下會形成特殊的 DNA 二級結構 G-quadruplex (G4結構),此結構可以抑制基因轉錄進而阻止癌細胞增生。
先前 Yang 團隊使用 Pu39 的縮短版序列 midG4 和 Pu30 鑑定出兩種不同的 G4 結構,且認為這兩種結構會互相轉換,但並沒有找到相關的直接證據。在本篇研究中,我們的目標物為完整版的 Pu39 序列,並且使用單分子螢光共振能量轉移光譜技術觀察即時的 G4 結構互相轉換的動態學與動力學。
我們發現 midG4 和 Pu30 兩種結構會經由一未知的中間狀態進行互相轉換,有趣的是互相轉換的現象來自於 Pu39 上的第六組連續 G 片段,表示第六組連續 G 片段對於基因的調節與表達而言相當重要,然而這組片段在先前 Yang 團隊的實驗中皆是被去除的。此外我們也在 Pu39 序列上發現了先前的研究團隊沒有鑑定出來的G4 結構 (3456G4)。
B-cell Lymphoma 2 (Bcl-2) is a proto-oncogene that is responsible for cell apoptosis. The overexpression of Bcl-2 gene is highly correlated to human cancer of many kinds. A 39-nucleotide (nt) GC-rich region (Pu39) in promoter P1 of Bcl-2 gene is believed to be involved in the gene modulation. This 39nt GC-rich region may form multiple G-quadruplex (G4) structures at specific cation concentration and pH value, stabilizing this G4 structure can inhibit gene transcription and potentially suppress the cancer cell formation. Previous studies have shown that this 39nt GC-rich region might fold into two different G4 conformations, among them, Bcl-2midG4 sequence fold into hybrid conformation and Bcl-2Pu30 sequence form parallel conformation. Interestingly, an interconversion between these two structures was proposed but no direct experimental evidence was shown. These two different interchangeable G4s in Pu39 may be important for the regulation of transcription, as each G4 is likely to be recognized by different proteins leading to different gene modulation. We applied single-molecule fluorescence resonance energy transfer (smFRET) spectroscopy to directly reveal the interconversion dynamics between Pu39 G4 states. We found that the interconversion between these two conformational states undergoes a stepwise mechanism through one unidentified intermediated state. Interestingly, the 6th tandem G-sequence, which was usually believed to be unimportant and truncated in the previous studies, modulate the mechanism of interconversion. Moreover, an additional G4 state was also found in the Pu39 configuration.
[1] 中華民國衛生福利部,105 年死因記者會新聞稿。2017 年 06 月 19 日。取自https://www.mohw.gov.tw/dl-33938-ce616117-61b8-4d2d-b8dc-62cf0c9eaa
21.html
[2] 中華民國衛生福利部,105 年死因統計結果分析。2017 年 06 月 19 日。取自https://www.mohw.gov.tw/dl-33939-96e6d956-c72e-453d-85d7-4f2e423fac
86.html
[3] World Health Organization (WHO), News. 1/2/2018.
From http://www.who.int/mediacentre/factsheets/fs297/en/
[4] In Stewart, B. W., & In Wild, C. P. (2014). World cancer report 2014.
[5] Wilbur B, ed. (2009). The World of the Cell.
[6] Weinberg, Robert A. (2014). The Biology of Cancer.
[7] Stephanie Lopez.; Saniya Qhadeer. Melemona Cancer (Article), 28/1/2013. From
http://saniyastephanie.blogspot.tw/2013/01/melemona-cancer-cancer-is-uncontrolled.html
[8] Adamson ED. Oncogenes in development. Development, 1987, 99, 449-471.
[9] https://en.wikipedia.org/wiki/Cancer
[10] Hockenbery, D.; Nunez, G.; Milliman, C.; Schreiber, R. D.; Korsmeyer, S. J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature, 1990, 348, 334-336.
[11] Vaux, D. L.; Cory, S.; Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature, 1988, 335, 440-442.
[12] Yunis, J. J. The chromosomal basis of human neoplasia. Science, 1983, 221, 227-236.
[13] Y Tsujimoto. Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes to Cells, 1998, 3, 697-707.
[14] Chao DT.; Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu. Rev. Immunol., 1998, 16, 195-419.
[15] Akagi, T.; Kondo, E.; Yoshino, T. Leuk. Expression of Bcl-2 protein and Bcl-2 mRNA in normal and neoplastic lymphoid tissues. Lymphoma, 1994, 13, 81-87.
[16] McDonnell, T. J.; Troncoso, P.; Brisbay, S. M.; Logothetis, C.; Chung, L.W.; Hsieh, J. T.; Tu, S. M.; Campbell, M. L. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res., 1992, 52, 6940-6944.
[17] Joensuu, H.; Pylkkanen, L.; Toikkanen, S. Bcl-2 protein expression and long-term survival in breast cancer. Am. J. Pathol., 1994, 145, 1191-1198.
[18] Tjalma, W.; De Cuyper, E.; Weyler, J.; Van Marck, E.; De Pooter, C.; Albertyn, G.; van Dam, P. Expression of bcl-2 in invasive and in situ carcinoma of the uterine cervix. Am. J. Obstet. Gynecol. 1998, 178, 113-117.
[19] Baretton, G. B. et al. Apoptosis and immunohistochemical bcl-2 expression in colorectal adenomas and carcinomas: Aspects of carcinogenesis and prognostic significance. Cancer. 1996, 77, 255-264.
[20] Pezzella, F.; Turley, H.; Kuzu, I.; Tungekar, M. F.; Dunnill, M. S.; Pierce, C. B.; Harris, A.; Gatter, K. C.; Mason, D. Y. Bcl-2 protein in non-small-cell lung carcinoma. N. Engl. J. Med. 1993, 329, 690-694.
[21] Thomas S. Dexheimer.; Daekyu Sun.; Hurley. bcl-2 protein in non-small-cell lung carcinoma. J. Am. Chem. Soc, 2006, 128, 5404-5415.
[22] Jixun Dai.; Thomas S. Dexheimer.; Ding Chen.; Megan Carver.; Attila Ambrus.; Roger A. Jones.; Yang. An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution. J. Am. Chem. Soc. 2006, 128, 1096-1098.
[23] Pernick, N. BCL2. PathologyOutlines.com website. http://www.pathologyoutlines.com/topic/stainsbcl2.html.
[24] Tsujimoto, Y.; Croce, C. M. Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 5214-5218.
[25] Seto, M.; Jaeger, U.; Hockett, R. D.; Graninger, W.; Bennett, S.; Goldman, P.; Korsmeyer, S. J. Alternative promoters and exons, somatic mutation and deregulation of the Bcl-2-Ig fusion gene in lymphoma. EMBO J. 1988, 7, 123-131.
[26] Yun-XiaXiong.; Ai-ChunChen.; Pei-FenYao.; De-YingZeng.; Yu-JingLu.; Jia-Heng Tan.; Zhi-ShuHuang.; Tian-MiaoOu. Blocking the binding of WT1 to bcl-2 promoter by G-quadruplex ligand SYUIQ-FM05. Biochemistry and Biophysics Reports, 2016, 5, 346-352.
[27] Hong Duan.; Caroline A. Heckman.; Linda M. Boxer. Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t (14; 18) lymphomas. Mol. Cell. Biol., 2005, 25(5), 1608-1619.
[28] Gellert M.; Lipsett MN.; Davies DR. Helix formation by guanylic acid. Proc Natl Acad Sci U S A., 1962, 48, 2013-2018.
[29] Raveendra I. Mathad.; Yang. G-quadruplex structures and G-quadruplex interactive compounds. Methods Mol Biol., 2011, 735, 77-96.
[30] Lane AN.; Chaires JB.; Gray RD.; Trent JO. Stability and kinetics of G-quadruplex structures. Nucleic Acids Res., 2008, 36(17), 5482-5515.
[31] Müller J. Functional metal ions in nucleic acids. Metallomics, 2010, 2(5), 318-327.
[32] Campbell NH.; Neidle S. G-quadruplexes and metal ions. Met Ions Life Sci., 2012, 10, 119-134.
[33] Prashansa Agrawal.; Clement Lin.; Raveendra I. Mathad.; Megan Carver.; Yang. The Major G-Quadruplex Formed in the Human BCL-2 Proximal Promoter Adopts a Parallel Structure with a 13-nt Loop in K+ Solution. J. Am. Chem. Soc. 2014, 136, 1750-1753.
[34] Dinshaw J. Patel.; Anh Tuan Phan.; Vitaly Kuryavyi. Solution structures of all parallel-stranded monomeric and dimeric G-quadruplex scaffolds of the human c-kit2 promoter. Nucleic Acids Research. 2007, 35, 7429-7455.
[35] Yuwei Chen.; Yang. Sequence, stability, structure of G-quadruplexes and their drug interactions. Curr Protoc Nucleic Acid Chem. 2012, 50, 1-17.
[36] Ivan Smirnov.; Richard H. Shafer. Effect of loop sequence and size on DNA aptamer stability. Biochemistry. 2000, 39, 1462-1468.
[37] Pascale Hazel.; Julian Huppert.; Shankar Balasubramanian.; Stephen Neidle. Loop-length-dependent folding of G-quadruplexes. J. Am. Chem. Soc. 2004, 126, 16405-16415.
[38] EricHenderson.; Charles C.Hardin.; Steven K.Walk.; IgnacioTinocoJr.; Elizabeth H.Blackburn. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell. 1987, 51(6), 899-908.
[39] Weisi Lu.; Yi Zhang.; Dan Liu.; Zhou Songyang.; Ma Wan. Telomeres—structure, function, and regulation. Experimental Cell Research. 2013, 319, 133-141.
[40] Daekyu Sun.; Brian Thompson.; Brian E. Cathers.; Miguel Salazar.; Sean M. Kerwin.; John O. Trent.; Terence C. Jenkins.; Stephen Neidle.; Hurley. Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem. 1997, 40, 2113-2116.
[41] https://zh.wikipedia.org/wiki/%E7%AB%AF%E7%B2%92
[42] T Simonsson.; P Pecinka.; M Kubista. DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res. 1998, 26(5), 1167–1172.
[43] Richard De Armond.; Stacey Wood.; Daekyu Sun.; Hurley.; Scot W. Ebbinghaus. Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1α promoter. Biochemistry, 2005, 44(49), 16341–16350.
[44] Kexiao Guo.; Alan Pourpak.; Kara Beetz-Rogers.; Vijay Gokhale.; Daekyu Sun.; Hurley. Formation of Pseudosymmetrical G-Quadruplex and i-Motif Structures in the Proximal Promoter Region of the RET Oncogene. J. Am. Chem. Soc., 2007, 129(33), 10220–10228.
[45] Daekyu Sun.; Kexiao Guo.; Jadrian J. Rusche.; Hurley. Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res. 2005, 33(18), 6070–6080.
[46] Kexiao Guo.; Vijay Gokhale.; Hurley.; Daekyu Sun. Intramolecularly folded G-quadruplex and i-motif structures in the proximal promoter of the vascular endothelial growth factor gene. Nucleic Acids Res. 2008, 36(14), 4598-4608.
[47] Dik-Lung Ma.; Victor Pui-Yan Ma.; Ka-Ho Leung.; Hai-Jing Zhong.; Hong-Zhang He.; Daniel Shiu-Hin Chan.; Chung-Hang Leung. (2013) Oncogene and Cancer - From Bench to Clinic.
[48] Hurley LH.; Wheelhouse RT.; Sun D.; Kerwin SM.; Salazar M.; Fedoroff OY.; Han FX.; Han H.; Izbicka E.; Von Hoff DD. G-quadruplexes as targets for drug design. Pharmacol Ther., 2000, 85(3), 141-158.
[49] Guangtao Song.; Jinsong Ren. Recognition and regulation of unique nucleic acid structures by small molecules. Chem. Commun., 2010, 46, 7283-7294.
[50] McLuckie KI.; Di Antonio M.; Zecchini H.; Xian J.; Caldas C.; Krippendorff BF.; Tannahill D.; Lowe C.; Balasubramanian S. G-quadruplex DNA as a molecular target for induced synthetic lethality in cancer cells. J Am Chem Soc., 2013, 135(26), 9640-9643.
[51] Wang Y.; Patel DJ. Guanine residues in d (T2AG3) and d (T2G4) form parallel-stranded potassium cation stabilized G-quadruplexes with anti glycosidic torsion angles in solution. Biochemistry. 1992, 31, 8112-8119.
[52] Phan AT.; Patel DJ. Two-repeat human telomeric d(TAGGGTTAGGGT) sequence forms interconverting parallel and antiparallel G-quadruplexes in solution: distinct topologies, thermodynamic properties, and folding/unfolding kinetics. J Am Chem Soc. 2003, 125, 15021-15027.
[53] Wang Y.; Patel DJ. Solution structure of the human telomeric repeat d [AG3 (T2AG3)3] G-tetraplex. Structure. 1993, 1, 263-282.
[54] Phan AT.; Kuryavyi V.; Luu KN.; Patel DJ. Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res. 2007, 35, 6517-6525.
[55] Anh Tuan Phan. Human telomeric G-quadruplex: structures of DNA and RNA sequences. FEBS Journal. 2010, 277, 1107-1117.
[56] Zhenjiang Zhang.; Jixun Dai.; Elizabeth Veliath.; Roger A. Jones.; Yang D. Structure of a two-G-tetrad intramolecular G-quadruplex formed by a variant human telomeric sequence in K+ solution: insights into the interconversion of human telomeric G-quadruplex structures. Nucleic Acids Res. 2010, 38(3), 1009-1021.
[57] J. Y. Lee.; Burak Okumus.; D. S. Kim.; Taekjip Ha. Extreme conformational diversity in human telomeric DNA. PNAS, 2005, 102(52), 18938-18943.
[58] Ritort F. Single-molecule experiments in biological physics: methods and applications. J. Phys. Condens. Matter. 2006, 18, 531-583.
[59] Hellen C. Ishikawa-Ankerhold.; Richard Ankerhold.; Gregor P. C. Drummen. Advanced fluorescence microscopy techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules, 2012, 17, 4047-4132.
[60] https://en.wikipedia.org/wiki/F%C3%B6rster_resonance_energy_transfer
[61] Axelrod D. Total internal reflection fluorescence microscopy in cell biology. Traffic. 2001, 2(11), 764-774.
[62] 倪丞緯。2017。以單分子光譜觀測 CTG 重複序列的滑動現象。碩士學位論文。台北:國立臺灣師範大學化學系。
[63] G.D. Fasman. (1996). Circular Dichroism and the Conformational Analysis of Biomolecules.
[64] Magdalena Małgowska.; Dorota Gudanis.; Anna Teubert.; Grażyna Dominiak.; Zofia Gdaniec. How to study G-quadruplex structures. BioTechnologia, 2012, 93(4), 381-390.
[65] Christof Grewer.; Hans-Dieter Brauer. Mechanism of the triplet-state quenching by molecular oxygen in solution. J. Phys. Chem., 1994, 98(16), 4230-4235.
[66] Colin Echeverrı´a Aitken.; R. Andrew Marshall.; Joseph D. Puglisi. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J., 2008, 94(5), 1826-1835.
[67] http://zhuang.harvard.edu/index.html
[68] Rahul Roy.; Sungchul Hohng.; Taekjip Ha. A practical guide to single-molecule FRET. Nature Methods, 2008, 5, 507-516.
[69] Sean A. McKinney.; Chirlmin Joo.; Taekjip Ha. Analysis of single-molecule FRET trajectories using Hidden Markov Modeling. Biophysical Journal, 2006, 91, 1941-1951.
[70] https://sg.idtdna.com/calc/analyzer