簡易檢索 / 詳目顯示

研究生: 魏婉瑄
WEI, Wan-Hsuan
論文名稱: 5E學習環融入前導組織與引導策略對國小生數學體積與表面積學習成效、動機及態度之影響
Effects of integrating 5E learning cycle with Advance Organizer and Guidance Strategy on Elementary School Students' Learning of Math Volume and Surface Area
指導教授: 陳明溥
Chen, Ming-Puu
口試委員: 陳明溥
Chen, Ming-Puu
鄭宜佳
Cheng, Yi-Chia
劉沛琳
LIU, Pei-Lin
口試日期: 2023/11/17
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 229
中文關鍵詞: 數學體積與表面積前導組織引導策略擴增實境5E學習環理論
英文關鍵詞: math volume and surface area, advance organizer, learning guidance, augmented reality, 5E learning cycle
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400073
論文種類: 學術論文
相關次數: 點閱:115下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討5E學習環融入前導組織(動畫模擬、演練範例)與引導策略(探索引導、問題引導)對國小生的數學體積與表面積學習成效、動機及態度之影響。研究對象為臺北市某國小六年級學生,有效樣本142人。本研究採用因子設計之準實驗研究法,自變項為「前導組織」與「引導策略」,「前導組織」根據連結舊經驗的「呈現方式」分為「動畫模擬」與「演練範例」;「引導策略」根據「反思的方式」分為「探索引導」與「問題引導」。依變項則為數學體積與表面積學習成效(知識理解、知識應用)、學習動機(價值成分、期望成分、科技接受度)及學習態度(自信心、喜好度、焦慮感、學習過程、學習方法、有用性)。
    研究結果發現:就學習成效而言,(1)在「知識理解」方面,演練範例前導組織組學習表現優於動畫模擬前導組織組;(2)在「知識應用」方面,接受動畫模擬前導組織的學生,使用問題引導的學習表現優於使用探索引導的學習表現;接受探索引導的學生,使用演練範例前導組織的學習表現優於使用動畫模擬前導組織的學習表現。(3)就學習動機而言,各實驗組學生皆持正向動機表現,但在「控制信念」面向,接受動畫模擬前導組織的學生,使用問題引導的表現優於使用探索引導的表現;接受問題引導的學生,使用動畫模擬前導組織的表現優於使用演練範例前導組織的表現。(4)就學習態度而言,各實驗組學生皆持正向態度表現,而在「自信心」面向,問題引導組的表現優於探索引導組;在「有用性」面向,動畫模擬前導組織組學習表現優於演練範例前導組織組。

    The purpose of this study was to explore the effects of integrating 5E learning cycle with advance organizer and learning guidance on elementary students’ learning performance, motivation, and attitude in learning of math volume and surface area. The effective sample size was 142 sixth-graders from an elementary school in Taipei. A quasi-experimental design was adopted in this study. The independent variables were advance organizer (animated simulation vs. worked examples) and learning guidance (exploration-based guidance vs. question-based guidance). The dependent variables included students’ learning performance, motivation, and attitude.
    The results revealed that (a) for knowledge comprehension performance, the worked examples-advance organizer group outperformed the animated simulation-advance organizer group; (b) for knowledge application performance, while students received the animated simulation-advance organizer, the question-based guidance group outperformed the exploration-based guidance group; and the worked examples-advance organizer group outperformed the animated simulation-advance organizer group while through the exploration-based guidance . (c) For learning motivation, all student showed positive motivation. However, in control of learning beliefs dimension, while students received the animated simulation-advance organizer, the question-based guidance group outperformed the exploration-based guidance group. Additionally, within the question-based guidance, the animated simulation-advance organizer group outperformed the worked examples-advance organizer group. (d) For learning attitude, all student showed positive attitude. In self-confidence dimension, the question-based guidance group outperformed the exploration-based guidance group. Furthermore, in self-confidence dimension, the animated simulation-advance organizer group outperformed the worked example-advance organizer group.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 5 第三節 研究範圍與限制 6 第四節 重要名詞釋義 8 第二章 文獻探討 10 第一節 幾何學習 10 第二節 擴增實境數學學習 15 第三節 5E學習環理論 20 第四節 前導組織 25 第五節 引導策略 29 第三章 研究方法 34 第一節 研究對象 34 第二節 研究設計 35 第三節 實驗流程 58 第四節 研究工具 62 第五節 資料處理與分析 68 第四章 結果與討論 74 第一節 數學體積與表面積學習成效分析 74 第二節 數學學習動機分析 81 第三節 數學學習態度分析 89 第五章 結論與建議 96 第一節 結論 96 第二節 建議 101 參考文獻 105 中文部分 105 英文部分 110 附錄一、數學學習動機前測問卷 124 附錄二、數學學習態度前測問卷 127 附錄三、「動畫模擬前導組織—探索引導」組學習單 129 附錄四、「動畫模擬前導組織—問題引導」組學習單 152 附錄五、「演練範例前導組織—探索引導」組學習單 175 附錄六、「演練範例前導組織—問題引導」組學習單 198 附錄七、體積與表面積概念學習成效測驗 221 附錄八、數學學習動機後測問卷 225 附錄九、數學學習態度後測問卷 228

    王明麗(2007)。五E學習環教學模式應用在國小三年級視覺藝術課程教學之行動研究。國立臺中教育大學美術學系碩士論文(未出版碩士論文),臺中市。
    王政凱(2020)。虛擬實境視角與回饋策略對高中生運用擴增實境進行三角測量問題解決之成效與動機的影響(未出版之碩士論文)。臺灣師範大學資訊教育研究所碩士論文,臺北市。
    王學武, 蔡佳穎, 陳宜均, & 賴蕙慈. (2011). 應用 Van Hiele 幾何思考層次理論於國小學童體積概念數位教材開發之研究. 國民教育, 51(6), 90-99.
    毛銘覬、呂長聰、黃品慈、湯中揚、劉松柏(2010)。創意教具之教學成效研究—以複合形體表面積為例。屏東教大科學教育,32,29-38。
    左台益 & 梁勇能. (2001). 國二學生空間能力與 van Hiele 幾何思考層次相關性研究. 師大學報: 科學教育類, 46(1&2), 1-20.
    江美娟(2013)。遊戲融入國小四年級分數與小數教學活動成效之研究(未出版之碩士論文)。國立臺中教育大學,臺中市。
    江重輝(2008)。國小長方體表面積之補充教學(未出版之碩士論文)。國立嘉義大學,嘉義縣。
    李少鈞(2019)。利用問題導向學習 (Problem-Based Learning, PBL) 探究網路霸凌問題: 以新竹市某高中為例(未出版之碩士論文)。政治大學圖書資訊學數位碩士在職專班,臺北市。
    李正聖(2006)。不同型式的前導組體對國小六年級學童科學性文章閱讀理解之比較研究(未出版之碩士論文)。國立臺中教育大學,臺中市。
    李俊儀、袁媛(2004)。資訊科技融入數學教學模組之開發舆研究─以國中平面幾何基礎課程教學為例。花蓮師院學報,19,119-142。
    李勇輝. (2017). 學習動機, 學習策略與學習成效關係之研究-以數位學習為例. 經營管理學刊, 14, 68-86.
    李雅婷. (2011). 師資職前教育師培生進行問題引導學習之課程設計與實施研究. 屏東教育大學學報-教育類, 37, 57-96.
    李嘉信(2016)。多媒體輔助教學在國小數學科「立體圖形」補救教學之應用(未出版之碩士論文)。國立中正大學,嘉義縣。
    何明瑾(2007)。引入線段圖對國小四年級學童在時間加減文字題解題表現之研究(未出版之碩士論文)。國立臺南大學數學教育學系數學科教學碩士班,台南市。
    何健誼(2002)。直觀法則對K-6年級學童在體積概念學習上的影響(未出版之碩士論文)。國立臺北師範學院,臺北市。
    沈佑霖(2003)。國小六年級學童體積概念之研究(未出版之碩士論文)。屏東師範學院數理教育研究所,屏東縣。
    林彥江(2014)。數位心像旋轉遊戲對國小五年級學生空間能力之影響(未出版之碩士論文)。國立台灣師範大學,臺北市。
    林達森(2011)。融入概念構圖之學習環教學模式在國中生態系統概念教學之實驗研究。嘉南學報(人文類),37,338-350。
    施保成(2011)。以 3D 電腦輔助設計軟體 Google SketchUp 融入國小複合形體表面積教學對學生數學學習成效之研究(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
    胡文菊. (2021). 虛擬實境科技運用於語言學習的理論背景與華語教學範例. Journal of Technology & Chinese Language Teaching, 12(2).
    徐日薇(2014)。數位學習環境與學習引導策略對國小晝夜與四季課程協成效之影響(未出版之碩士論文)。臺灣師範大學資訊教育研究所碩士論文,臺北市。
    徐毓慧(2001)。利用前導組織因子增進恆定概念學習之研究(未出版碩士論文)。國立臺灣師範大學,臺北市。
    涂綺穗(1999)。談有效的前導組體。國教之友,51(1),58-65。
    翁榮源, 江鴻仁, & 李孔文. (2004). 問題引導式學習法在「有機化學」網站之應用與研究. 科學教育學刊, 12(4), 491-507.
    高淑珍. (2012). 以知識分享為中介變數探討學習動機, 學習互動以及學習平台對協同學習滿意度的影響. 商管科技季刊, 13(1), 75-98.
    張秋雁、羅昭強(2008)。國小學童空間能力現況之探討(未出版之碩士論文)。國立新竹教育大學人力資源教育處教師在職進修,新竹市。
    張書豪(2017)。探索學習模式與提示策略對國中生英語生字與閱讀擴增實境學習成效與動機之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
    張順原(2015)。學習態度、學習動機、激勵因素與學習成效關係之研究-以消防特考班學員為例(未出版之碩士論文)。南華大學,嘉義縣
    張新仁(1993)。奧斯貝的學習理論與教學應用。教育研究雙月刊,32,31-51。
    張嘉心(2021)。學習順序與鷹架策略對高低先備知識國中生以擴增實境輔助電流磁效應學習成效、動機及態度之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
    教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校。
    梁志平 & 佘曉清. (2006). 建構主義式的網路科學學習對國中生力的概念學習之研究. 科學教育學刊, 14(5), 493-516.
    梁朝雲. (2010). 實踐「寓樂於教」理念的數位學習設計. T&D 飛訊, 91, 1-19.
    郭重吉. (1992). 從建構主義的觀點探討中小學數理教學的改進. 科學發展月刊, 20(5), 548-570.
    陳舜文、魏嘉瑩(2013)。大學生學習動機之「雙因素模式」:學業認同與角色認同之功能。中華心理學刊,55(1),41-55
    陳嘉陽(2012)。教育概論(上冊),頁380-382。教甄策略研究中心。
    陳鴻綸 & 曹雅玲. (2005). 國小學童在幾何問題的解題表現研究-長方體的體積和表面積為例. 國教新知, 52(4), 65-78.
    傅翊宏(1995)。前導組織對不同語文能力國小學童在文章閱讀理解影響之研究(未出版碩士論文)。國立台南師範學院初等教育研究所碩士論文,台南市。
    彭敏華(2020)。觸覺回饋與鷹架策略對國小學習者擴增實境互動學習之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
    彭惠儀(2017)。以科技接受模式探討虛擬實境遊戲之使用意願(未出版之碩士論文)。義守大學資訊管理學系學位論文碩士班,高雄市。
    彭閔聰(2009)。3D虛擬實境應用於合作學習之探討(未出版之碩士論文)。臺中科技大學資訊科技與應用研究所學位論文,臺中市。
    程柏豪(2006)。資訊科技融入國小數學科教學效益之研究-以國小五年級體積與表面積為例(未出版之碩士論文)。國立臺中教育大學,臺中市。
    舒玉, 陳鈺潔, & 黃天麒. (2019). 護理教育未來式—以虛擬實境誘發動機之整合學習模式. 護理雜誌, 66(2), 22-28.
    黃幸美. (2015). 整合三維空間幾何概念與體積的數位教材與教學試驗. 科學教育學刊, 23(1), 53-82.
    黃琡惠 & 吳耀明. (2010). 國小社會領域實施問題本位學習對提升學童學習動機之研究. 臺中教育大學學報: 教育類, 24(1), 129-153.
    黃榆婷(2010)。應用悅趣化數位教材於國小學童間學習成效與展開圖解題歷程之研究(未出版之碩士論文)。國立臺北教育大學,臺北市。
    黃翰偉(2013)。「評量回饋」對國中八年級學生數學科學習態度、學習策略、自我效能之影響(未出版之碩士論文)。淡江大學,新北市。
    葉麗鳳(2008)。國小五年級學童體積概念之研究(未出版之碩士論文)。國立臺中教育大學,臺中市。
    詹惠雯、沈順治(2008)。線上學習成效影響因素模式之探討。中國行政,79,1-21。
    趙翊君、梁淑坤(2017)。團體遊戲之研發及融入五年級數學複習對學生學習之改變(未出版碩士論文)。國立中山大學,高雄市。
    劉政宏. (2009). 對學習行為最有影響力的動機成分? 雙核心動機模式之初探. 教育心理學報, 41(2),361-383.
    蔡文豐、王玲玲(2012)。學習環境與學習態度相關之研究。建國科大社會人文期刊,31(2),53-76。
    蔡慧潔(2022)。影響護理系學生在問題導向學習課程中學習動機及學習滿意度之因素探討(未出版之碩士論文)。中山醫學大學護理學系,臺中市。
    鄭文輝(2005)。國中數學能力卡測驗對學生的數學學習成就與態度之影響(未出版之碩士論文)。佛光大學,宜蘭縣。
    盧伊瑩(2017)。問題引導學習(PBL)融入國中歷史教學之個案研究(未出版之碩士論文)。臺灣師範大學教育學系,臺北市。
    盧健瑋(2017)。數位學習環境與引導策略對高低先備知識高中生數學遞迴學習成效與動機之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
    賴崇閔, 黃秀美, 廖述盛, & 黃雯雯. (2009). 3D 虛擬實境應用於醫學教育接受度之研究. 教育心理學報, 40(3), 341-361.
    賴麗香. (2013). 科技大學生對於會計課程學習成就感之研究. 商管科技季刊, 14(1), 1-30.
    譚寧君(1998)。國小兒童面積迷思概念分析研究。國立臺北師範學院學報,11,573-602。
    饒見維(1996)。國小數學遊戲教學法。臺北市:五南圖書公司。
    Abrahamson, D. & Trninic, D. (2011, June). Toward an embodied-interaction design framework for mathematical concepts. In Proceedings of the 10th International Conference on Interaction Design and Children (pp. 1-10).
    Açışlı, S., Yalçın, S. A., & Turgut, Ü. (2011). Effects of the 5E learning model on students’ academic achievements in movement and force issues. Procedia-Social and Behavioral Sciences, 15, 2459-2462.
    Akçayır, M. & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1-11.
    Amir, M. F., Fediyanto, N., Rudyanto, H. E., Afifah, D. S. N., & Tortop, H. S. (2020). Elementary students’ perceptions of 3Dmetric: A cross-sectional study. Heliyon, 6(6).
    Arici, F., Yildirim, P., Caliklar, Ş., & Yilmaz, R. M. (2019). Research trends in the use of augmented reality in science education: Content and bibliometric mapping analysis. Computers & Education, 142, 103647.
    Arvanitaki, M. & Zaranis, N. (2020). The use of ICT in teaching geometry in primary school. Education and Information Technologies, 25(6), 5003-5016.
    Attard, C. & Curry, C. (2012). Exploring the use of iPads to engage young students with mathematics. Mathematics Education Research Group of Australasia.
    Attard, C. & Orlando, J. (2014). Early career teachers, mathematics and technology: Device conflict and emerging mathematical knowledge. Mathematics Education Research Group of Australasia.
    Ausubel, D. P. (1963). The psychology of meaningful verbal learning. New York: Grune & Stratton.
    Ausubel, D. P. (1978). In defense of advance organizers: A reply to the critics. Review of Educational Research, 48(2), 251–257.
    Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385.
    Bakri, S. (2021). Effect of 5E learning model on academic achievement in teaching mathematics: Meta-analysis study. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(8), 196-204.
    Barell, J. (1992). Like an incredibly hard algebra problem: Teaching for metacognition. If Minds Matter: A Forward to the Future, 1, 257-266.
    Barnes, B. R. & Clawson, E. U. (1975). Do advance organizers facilitate learning? Recommendations for further research based on an analysis of 32 studies. Review of Educational Research, 45(4), 637-659.
    Bhagat, K. K., Yang, F. Y., Cheng, C. H., Zhang, Y., & Liou, W. K. (2021). Tracking the process and motivation of math learning with augmented reality. Educational Technology Research and Development, 69(6), 3153-3178.
    Biber, C., Tuna, A., & Korkmaz, S. (2013). The mistakes and the misconceptions of the eighth grade students on the subject of angles. European Journal of science and mathematics education, 1(2), 50-59.
    Bıyıklı, C. & Yağcı, E. (2015). 5E öğrenme modeline göre düzenlenmiş eğitim durumlarının akademik başarı ve tutuma etkisi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 15(1), 302-325.
    Bloom, B. S. (1956). Taxonomy of Educational Objectives. Vol. 1: Cognitive Domain. New York: McKay.
    Boaler, J., Chen, L., Williams, C., & Cordero, M. (2016). Seeing as understanding: The importance of visual mathematics for our brain and learning. Journal of Applied & Computational Mathematics, 5(5), 1–6.
    Bokosmaty, S., Sweller, J., & Kalyuga, S. (2015). Learning geometry problem solving by studying worked examples: Effects of learner guidance and expertise. American Educational Research Journal, 52(2), 307-333.
    Bruckman, A. & Resnick, M. (1995). The MediaMOO project: Constructionism and professional community. Convergence, 1(1), 94-109.
    Bybee, R. W. & Landes, N. M. (1990). Science for life & living: An elementary school science program from biological sciences curriculum study. The American Biology Teacher, 52(2), 92-98.
    Can, A. A. (2021). The effect of worked examples method on primary school students' fractions achievement. International Online Journal of Primary Education, 10(2), 361-382.
    Chang, G., Morreale, P., & Medicherla, P. (2010, March). Applications of augmented reality systems in education. In Society for Information Technology & Teacher Education International Conference (pp. 1380-1385). Association for the Advancement of Computing in Education (AACE).
    Chao, W. H. & Chang, R. C. (2018). Using augmented reality to enhance and engage students in learning mathematics. Advances in Social Sciences Research Journal, 5(12), 455-464.
    Chen, Y. C. (2008). Peer learning in an AR-based learning environment. In 16th international conference on computers in education (pp. 291-295).
    Clements, D. H. & Battista, M. T. (1992). Geometry and spatial reasoning. Handbook of Research on Mathematics Teaching and Learning, 420-464.
    Clements, D. H. (2003). Teaching and learning geometry. A Research Companion to Principles and Standards for School Mathematics, 151-178.
    Cranton, P. (2012). Planning instruction for adult learners. Toronto: Wall and Emerson.
    D'Ambrosio, U. (1990). The role of mathematics education in building a democratic and just society. For the Learning of Mathematics, 10(3), 20-23.
    Davis, E. A. (2000). Scaffolding students' knowledge integration: Prompts for reflection in KIE. International Journal of Science Education, 22(8), 819-837.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340.
    De Jong, T. & Lazonder, A. W. (2014). 15 the guided discovery learning principle in multimedia learning. The Cambridge Handbook of Multimedia Learning, 371.
    Demetriadis, S. N., Papadopoulos, P. M., Stamelos, I. G., & Fischer, F. (2008). The effect of scaffolding students’ context-generating cognitive activity in technology-enhanced case-based learning. Computers & Education, 51, 939–954.
    Demitriadou, E., Stavroulia, K. E., & Lanitis, A. (2020). Comparative evaluation of virtual and augmented reality for teaching mathematics in primary education. Education and Information Technologies, 25(1), 381-401.
    Denham, A. R. (2018). Using a digital game as an advance organizer. Educational Technology Research and Development, 66(1), 1-24.
    Dorji, U., Panjaburee, P., & Srisawasdi, N. (2015). A learning cycle approach to developing educational computer game for improving students' learning and awareness in electric energy consumption and conservation. Journal of Educational Technology & Society, 18(1), 91-105.
    Driver, R. & Oldham, V. (1986). A constructivist approach to curriculum development in science. Studies in Science Education, 13(1), 105-122.
    Erlian, B. P. (2009). Pegaruh penggunaan model daur belajar (Learning Cycle) terhadap kemampuan berpikir kritis dan sikap siswa kelas XI MA Muallimat NW Pancor pada mata pelajaran Matematika. Educatio, 4(2), 72-83.
    Estapa, A. & Nadolny, L. (2015). The effect of an augmented reality enhanced mathematics lesson on student achievement and motivation. Journal of STEM education, 16(3).
    Ewais, A. & Troyer, O. D. (2019). A usability and acceptance evaluation of the use of augmented reality for learning atoms and molecules reaction by primary school female students in Palestine. Journal of Educational Computing Research, 57(7), 1643-1670.
    Fabian, K., Topping, K. J., & Barron, I. G. (2016). Mobile technology and mathematics: Effects on students’ attitudes, engagement, and achievement. Journal of Computers in Education, 3, 77-104.
    Fidan, M. & Tuncel, M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. Computers & Education, 142, 103635.
    Firdaus, F., Kailani, I., Bakar, M. N. B., & Bakry, B. (2015). Developing critical thinking skills of students in mathematics learning. Journal of Education and Learning (EduLearn), 9(3), 226-236.
    Fitriani, N., Suryadi, D., & Darhim, D. (2018, November). Analysis of mathematical abstraction on concept of a three dimensional figure with curved surfaces of junior high school students. In Journal of Physics: Conference Series (Vol. 1132, No. 1, p. 012037).
    Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410-8415.
    Freitas, R. & Campos, P. (2008). SMART: A System of augmented reality for teaching 2nd grade students. People and Computers XXII Culture, Creativity, Interaction 22, 27-30.
    Fretz, E. B., Wu, H. K., Zhang, B., Davis, E. A., Krajcik, J. S., & Soloway, E. (2002). An investigation of software scaffolds supporting modeling practices. Research in Science Education, 32, 567-589.
    Ge, X. & Land, S. M. (2003). Scaffolding students’ problem-solving processes in an ill-structured task using question prompts and peer interactions. Educational Technology Research and Development, 51(1), 21-38.
    Ge, X., Chen, C. H., & Davis, K. A. (2005). Scaffolding novice instructional designers’ problem-solving processes using question prompts in a Web-based learning environment. Journal of Educational Computing Research, 33(2), 219–248.
    Gecu‐Parmaksiz, Z. & Delialioglu, O. (2019). Augmented reality‐based virtual manipulatives versus physical manipulatives for teaching geometric shapes to preschool children. British Journal of Educational Technology, 50(6), 3376-3390.
    Gee, J. P., Michaels, S., & O’Conner, M. C. (1992). Discourse analysis. In M. D. LeCompte, W. L. Millroy, & J. Preissle (Eds.) The Handbook of Qualitative Research in Education (pp. 227-291). New York: Academic Press.
    Githua, B. N. & Nyabwa, R. A. (2008). Effects of advance organiser strategy during instruction on secondary school students’ mathematics achievement in Kenya’s Nakuru district. International Journal of Science and Mathematics Education, 6, 439-457.
    Goodwin, K. (2012). Use of tablet technology in the classroom. NSW Department of Education and Communities, 6-93.
    Guay, F., Ratelle, C. F., & Chanal, J. (2008). Optimal learning in optimal contexts: The role of self-determination in education. Canadian psychology/Psychologie canadienne, 49(3), 233.
    Hannafin, M., Land, S., & Oliver, K. (1999). Open learning environments: Foundations, methods, and models. Instructional-design theories and models: A new paradigm of instructional theory, 2, 115-140.
    Hänze, M. & Leiss, D. (2022). Using heuristic worked examples to promote solving of reality-based tasks in mathematics in lower secondary school. Instructional Science, 1-21.
    Harlen, W. & Deakin Crick, R. (2003). Testing and motivation for learning. Assessment in Education: Principles, Policy & Practice, 10(2), 169–207.
    Herron, C. (1994). An investigation of the effectiveness of using an advance organizer to introduce video in the foreign language classroom. The Modern Language Journal, 78(2), 190-198.
    Hill, J. R. & Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of resource-based learning. Educational Technology, Research and Development, 49(3), 37-52
    Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational psychologist, 42(2), 99-107.
    Hogan, K. & Pressley, M. (1997). Becoming a scaffolder of students’ learning. Scaffolding Student Learning, 185-191.
    Hursen, C. & Ertac, G. (2015). K 12 Students’ Attitudes towards Using Constructivism in History Lessons. Procedia-Social and Behavioral Sciences, 177, 475-480.
    Ibáñez, M. B. & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109-123.
    Ibáñez, M. B., Portillo, A. U., Cabada, R. Z., & Barrón, M. L. (2020). Impact of augmented reality technology on academic achievement and motivation of students from public and private Mexican schools. A case study in a middle-school geometry course. Computers & Education, 145, 103734.
    Iji, C. O. (2010). Actualizing mathematics achievement and retention among primary school pupils using interactive logo programming package. Abacus, 35(1), 80-90.
    Johnson, L., Levine, A., Smith, R., & Stone, S. (2010). The 2010 Horizon Report. New Media Consortium. 6101 West Courtyard Drive Building One Suite 100, Austin, TX 78730.
    Joyce, B. & Weil, M. (2003). Models of Teaching (5th ed.). Englewood Cliffs, N. J.: Prentice-Hall.
    Kadarisma, G., Fitriani, N., & Amelia, R. (2020). Relationship between misconception and mathematical abstraction of geometry at junior high school. Infinity Journal, 9(2), 213-222.
    Kalyuga, S., Renkl, A., & Paas, F. (2010). Facilitating flexible problem solving: A cognitive load perspective. Educational Psychology Review, 22, 175-186.
    Karplus, R. & Their, H. D. (1967). A new look at elementary school science. IL: Rand McNally.
    Kaufmann, H. & Dünser, A. (2007). Summary of usability evaluations of an educational augmented reality application. In Virtual Reality: Second International Conference, ICVR 2007, Held as part of HCI International 2007, Beijing, China, July 22-27, 2007. Proceedings 2 (pp. 660-669). Springer Berlin Heidelberg.
    Kaufmann, H. & Schmalstieg, D. (2002, July). Mathematics and geometry education with collaborative augmented reality. In ACM SIGGRAPH 2002 conference abstracts and applications (pp. 37-41).
    Kaur, N., Pathan, R., Khwaja, U., Sarkar, P., Rathod, B., & Murthy, S. (2018, December). GeoSolvAR: Augmented Reality based application for mental rotation. In 2018 IEEE Tenth International Conference on Technology for Education (T4E) (pp. 45-52). IEEE.
    Kiger, D., Herro, D., & Prunty, D. (2012). Examining the influence of a mobile learning intervention on third grade math achievement. Journal of Research on Technology in Education, 45(1), 61-82.
    Kim, H. J. & Pedersen, S. (2011). Advancing young adolescents’ hypothesis-development performance in a computer-supported and problem-based learning environment. Computers & Education, 57(2), 1780-1789.
    Koester, B. A. (2003). Prisms and pyramids: Constructing three-dimensional models to build understanding. Teaching Children Mathematics, 9(8), 436-442.
    Koscianski, A., Ribeiro, R. J., & da Silva, S. C. R. (2012). Short animation movies as advance organizers in physics teaching: A preliminary study. Research in Science & Technological Education, 30(3), 255-269.
    Lamb, R., Akmal, T., & Petrie, K. (2015). Development of a cognition‐priming model describing learning in a STEM classroom. Journal of Research in Science Teaching, 52(3), 410-437.
    Lawson, A. E. (1989). A Theory of Instruction: Using the Learning Cycle To Teach Science Concepts and Thinking Skills. NARST Monograph, Number One, 1989.
    Lazonder, A. W. & Harmsen, R. (2016). Meta-analysis of inquiry-based learning: Effects of guidance. Review of Educational Research, 86(3), 681-718.
    Lee, K. (2012). Augmented reality in education and training. TechTrends, 56, 13-21.
    Lee, S. W. Y., Hsu, Y. T., & Cheng, K. H. (2022). Do curious students learn more science in an immersive virtual reality environment? Exploring the impact of advance organizers and epistemic curiosity. Computers & Education, 182, 104456.
    Li, C. H. (2014). An alternative to language learner dependence on L2 caption‐reading input for comprehension of sitcoms in a multimedia learning environment. Journal of Computer Assisted Learning, 30(1), 17-29.
    Li, C. H., Wu, M. H., & Lin, W. L. (2019). The use of a “Think-Pair-Share” brainstorming advance organizer to prepare learners to listen in the L2 classroom. International Journal of Listening, 33(2), 114-127.
    Lipari, M., Wilhelm, S. M., Giuliano, C. A., Martirosov, A. L., & Salinitri, F. D. (2022). A scaffolded problem-based learning course for first-year pharmacy students. Currents in Pharmacy Teaching and Learning, 14(3), 352-358.
    Looi, C.K., Wadhwa, B., Dagiené, V., Seow, P., Kee, Y.H., & Wu, L.K. (Eds.). (2021). Proceedings of the 5th APSCE International Computational Thinking and STEM in Education Conference 2021. Singapore: National Institute of Education.
    Lubinski, D. (2010). Spatial ability and STEM: A sleeping giant for talent identification and development. Personality and Individual Differences, 49(4), 344-351.
    Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225-236.
    Matthews, M. R. (Ed.). (1994). Science teaching, the role of history and philosophy of science. London: Routledge.
    Mayer, R. E. (1979). Twenty years of research on advance organizers: Assimilation theory is still the best predictor of results. Instructional Science, 8, 133-167.
    Mayer, R. E. (1979a). Can advance organizers influence meaningful learning? Review of Educational Research, 49(2), 371–383.
    Mayer, R. E. & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52.
    Milgram, P. & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77(12), 1321-1329.
    Moreno, R. & Mayer, R. E. (2002). Learning science in virtual reality multimedia environments: Role of methods and media. Journal of Educational Psychology, 94(3), 598–610.
    Ms, R., Herman, T., & Dahlan, J. A. (2017, January). The enhancement of students' critical thinking skills in mathematics through the 5E learning cycle with metacognitive technique. In International Conference on Mathematics and Science Education (pp. 101-106). Atlantis Press.
    Narciss, S. (2013). Designing and evaluating tutoring feedback strategies for digital learning. Digital Education Review, 23, 7-26.
    National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: The National Council of Teachers of Mathematics.
    Nischelwitzer, A., Lenz, F. J., Searle, G., & Holzinger, A. (2007). Some aspects of the development of low-cost augmented reality learning environments as examples for future interfaces in technology enhanced learning. In Universal Access in Human-Computer Interaction. Applications and Services: 4th International Conference on Universal Access in Human-Computer Interaction, UAHCI 2007 Held as Part of HCI International 2007 Beijing, China, July 22-27, 2007 Proceedings, Part III 4 (pp. 728-737). Springer Berlin Heidelberg.
    Norman, G. R. & Schmidt, H. G. (1992). The psychological basis of problem-based learning: A review of the evidence. Academic Medicine, 67(9), 557-65.
    Novak, J. D. (1980). Learning theory applied to the biology classroom. The American Biology Teacher, 42(5), 280-285.
    Nunnally, J. C. & Bernstein, I. H. (1978). Psychometric theory mcgraw-hill New York. The Role of University in the Development of Entrepreneurial Vocations: A Spanish Study, 387-405.
    Okafor, C. F. (2017). Effect of 5E-learning cycle model on senior secondary school students’ achievement and retention in geometry (Unpublished master's thesis). Faculty of education university of Nigeria, Nsukka.
    Özenc, M., Dursun, H., & ŞAHİN, S. (2020). The effect of activities developed with web 2.0 tools based on the 5e learning cycle model on the multiplication achievement of 4th graders. Participatory Educational Research, 7(3), 105-123.
    Özerem, A. (2012). Misconceptions in geometry and suggested solutions for seventh grade students. Procedia-Social and Behavioral Sciences, 55, 720-729.
    Papanastasiou, G., Drigas, A., Skianis, C., Lytras, M., & Papanastasiou, E. (2019). Virtual and augmented reality effects on K-12, higher and tertiary education students’ twenty-first century skills. Virtual Reality, 23(4), 425-436.
    Pellegrino, J. W. & Kail, R. (1982). Process analyses of spatial aptitude. Advances in the Psychology of Human Intelligence, 1, 311-365.
    Piaget, J. (1923). La pensée symbolique et le pensée de l'enfant. Archives de psychologie, 18, 273–304.
    Pintrich, P. R. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ).
    Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In M. Boekaerts, P. Pintrich, & M. Zeidner (Eds.), Handbook of Self-regulation (pp. 451–502). San Diego, CA: Academic Press.
    Pourshanazari, A. A., Roohbakhsh, A., Khazaei, M., & Tajadini, H. (2013). Comparing the long-term retention of a physiology course for medical students with the traditional and problem-based learning. Advances in Health Sciences Education, 18, 91-97.
    Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., Kyza, E., Edelson, D., & Soloway, E. (2004). A scaffolding design framework for software to support science inquiry. The Journal of the Learning Sciences, 13(3), 337-386.
    Radu, I. (2012, November). Why should my students use AR? A comparative review of the educational impacts of augmented-reality. In 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (pp. 313-314). IEEE.
    Relan, A. (1991). Effectiveness of a visual comparative advance organizer in teaching biology. Research in Science and Technological Education, 9(2), 213–222.
    Richardson, V. (Ed.). (1997). Constructivist teacher education: Building new understandings. Psychology Press.
    Robinson, J. & Coltz, J. (2013, March). Augmenting your teaching using augmented reality. In Society for Information Technology & Teacher Education International Conference (pp. 3352-3353). Association for the Advancement of Computing in Education (AACE).
    Rourke, A. & Sweller, J. (2009). The worked-example effect using ill-defined problems: Learning to recognise designers' styles. Learning and Instruction, 19(2), 185-199.
    Sadi, Ö., Çakıroğlu, J. (2010). Effects of 5E learning cycle on students' human circulatory system achievement. Journal of Applied Biological Sciences, 4(3) 63-67
    Sahin, D. & Yilmaz, R. M. (2020). The effect of Augmented Reality Technology on middle school students' achievements and attitudes towards science education. Computers & Education, 144, 103710.
    Salmi, H., Thuneberg, H., & Vainikainen, M. P. (2017). Making the invisible observable by augmented reality in informal science education context. International Journal of Science Education, Part B, 7(3), 253-268.
    Saritas, M. T. (2015). Chemistry teacher candidates' acceptance and opinions about virtual reality technology for molecular geometry. Educational Research and Reviews, 10(20), 2745-2757.
    Sayaf, A. M. (2023). Adoption of E-learning systems: An integration of ISSM and constructivism theories in higher education. Heliyon, 9(2).
    Setiawan, A. (2019, April 15). The effects of 5E lerning cycle with problem posing on polyhedron viewed from the mathematics learning motivation. https://doi.org/10.31219/osf.io/5ajv9
    Shihusa, H. & Keraro, F. N. (2009). Using advance organizers to enhance students’ motivation in learning biology. Eurasia Journal of Mathematics, Science and Technology Education, 5(4), 413-420.
    Shute, V. J. (2008). Focus on formative feedback. Review of educational research, 78(1), 153-189.
    Solomon, J. (1987). New thoughts on teacher education. Oxford Review of Education, 13(3), 267-274.
    Sommerauer, P. & Müller, O. (2014). Augmented reality in informal learning environments: A field experiment in a mathematics exhibition. Computers & Education, 79, 59-68.
    Strobel, J. & Van Barneveld, A. (2009). When is PBL more effective? A meta-synthesis of meta-analyses comparing PBL to conventional classrooms. Interdisciplinary Journal of Problem-based Learning, 3(1), 44-58.
    Sutherland, I. E. (1968, December). A head-mounted three dimensional display. In Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I (pp. 757-764).
    Suwannaphisit, S., Anusitviwat, C., Hongnaparak, T., & Bvonpanttarananon, J. (2021). Expectations on online orthopedic course using constructivism theory: A cross-sectional study among medical students. Annals of Medicine and Surgery, 67, 102493.
    Tabachnick, B. G. & Fidell, L. S. (2006). Using multivariate statistics. Boston: Bearson.
    Tang, A., Owen, C., Biocca, F., & Mou, W. (2003, April). Comparative effectiveness of augmented reality in object assembly. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 73-80).
    Torf, B. & Tirotta, R. (2010). Interactive whiteboards produce small gains in elementary students’ self-reported motivation in mathematics. Computers & Education, 54, 379–383.
    Tuna, A. & Kacar, A. (2013). The effect of 5E learning cycle model in teaching trigonometry on students’ academic achievement and the permanence of their knowledge. International Journal on New Trends in Education and Their Implications, 4(1), 73-87.
    Van den Broek, P., Tzeng, Y., Risden, K., & Trabasso, T. (2001). Inferential questioning: Effects on comprehension of narrative texts as a function of grade and timming. Journal of Educational Psycholog, 93(3), 521-529.
    Van Hiele, P. M. (1986). Structure and insigh: A theory of mathematics education. Orlando, FL: Academic Press.
    Vandergrift, L. (2007). Recent developments in second and foreign language listening comprehension research. Language Teaching, 40(3), 191-210.
    Vernon, D. T. & Blake, R. L. (1993). Does problem-based learning work? A meta-analysis of evaluative research. Academic Medicine, 68(7), 550-63.
    Vincenzi, D. A., Valimont, B., Macchiarella, N., Opalenik, C., Gangadharan, S. N., & Majoros, A. E. (2003, October). The effectiveness of cognitive elaboration using augmented reality as a training and learning paradigm. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 47, No. 19, pp. 2054-2058). Sage CA: Los Angeles, CA: SAGE Publications.
    Vogel-Walcutt, J. J., Del Giudice, K., Logan, F., & Nicholson, D. (2013). Using a video game as an advance organizer: Effects on development of procedural and conceptual knowledge, cognitive load, and casual adoption. Journal of Online Learning and Teaching, 9(3), 376
    Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Cambridge University Press.
    West, C. K., Farmer, J. A., & Wolff, P. M. (1991). Instructional design: Implications from cognitive science.
    Wojciechowski, R. & Cellary, W. (2013). Evaluation of learners’ attitude toward learning in ARIES augmented reality environments. Computers & Education, 68, 570-585.
    Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89-100.
    Yew, E. H. & Goh, K. (2016). Problem-based learning: An overview of its process and impact on learning. Health Professions Education, 2(2), 75-79.
    Yussof, Y. M., Jamian, A. R., Roslan, S., Hamzah, Z. A. Z., & Kabilan, M. K. (2012). Enhancing reading comprehension through cognitive and graphic strategies: A constructivism approach. Procedia-Social and Behavioral Sciences, 64, 151-160.
    Zacharia, Z. C., Manoli, C., Xenofontos, N., De Jong, T., Pedaste, M., van Riesen, S. A., ... & Tsourlidaki, E. (2015). Identifying potential types of guidance for supporting student inquiry when using virtual and remote labs in science: A literature review. Educational Technology Research and Development, 63, 257-302.
    Zimmerman, B. J. (2001). Theories of self-regulated learning and academic achievement: An overview and analysis. In B. J. Zimmerman & D. H. Schunk (Eds.), Self-regulated Learning and Academic Achievement—theoretical perspectives (pp. 1–37). Mahwah, NJ: Erlbaum.

    下載圖示
    QR CODE