研究生: |
陳瑋廷 Chen, Wei-Ting |
---|---|
論文名稱: |
基於凱利方格之推薦系統對不同認知風格學生在生活科技學習表現之影響 Effects of a Recommender System based on the Repertory Grids on Living Technology Learning Performance of the Students with Different Cognitive Styles |
指導教授: |
許庭嘉
Hsu, Ting-Chia |
學位類別: |
碩士 Master |
系所名稱: |
科技應用與人力資源發展學系 Department of Technology Application and Human Resource Development |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 130 |
中文關鍵詞: | 推薦系統 、生活科技 、學習動機 、認知負荷 、認知風格 、擴增實境 、電子書 |
英文關鍵詞: | Recommendation system, living technology, learning motivation, cognitive load, cognitive style, augmented reality, e-book |
論文種類: | 學術論文 |
相關次數: | 點閱:220 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以電子書與擴增實境發展生活科技教育數位學習教材內容,同時為了提供學生適性化內容,因此開發凱利方格推薦系統。本研究採用準實驗設計,以38位高級職業學校學生為受測對象,將學生區分成實驗組與控制組,實驗組是透過凱利方格推薦系統提供學生個別所需的電子書數位內容與擴增實境教材給學習者,控制組則是提供學生所有的電子書數位內容與擴增實境教材給學習者。本研究旨在探討兩組在學習成效、學習動機、認知負荷之學習表現。此外,本研究亦進一步探討兩組中「場獨立」與「場依賴」認知風格學生,在實作各面向之表現是否有差異。研究結果發現不論是使用凱利方格推薦系統結合擴增實境與電子書內容的學習方式,或是使用擴增實境與電子書內容的學習方式,皆有效提升學生於該課程的學科知識以及實作成果,帶給學生高度的學習動機及有效降低學生認知負荷。本研究發展凱利方格推薦系統輔助學生動手做的結果,發現操作機具前若需先在實作材料上劃線或設計,系統輔助場獨立的學生之實作成果比場依賴學生效果好。反之,不需使用機具,例如只要使用白膠來黏合的實作,則是輔助場依賴的學生實作成果比場獨立好。其他直接操作機具設定及完成實作,場獨立和場依賴的學生獲得的輔助實作成果一樣好。相關原因於本研究都有深入討論,藉由本研究結果,可提供未來生活科技數位學習相關研究及教學者作為參考。
This study developed the e-learning contents for living technology education by e-book and augmented reality. In order to provide the student with adaptive contents, this study further developed a recommendation system based on the repertory grid technique. This study adopted the quasi-experiment design. Totally 38 vocational high school students participated in this study. They were grouped into experimental group and control group, respectively. The students in the experimental group applied the recommendation system to providing adaptive e-book and augmented reality content for individuals while the students in the control group received all the content of e-book and augmented reality. This study attempted to explore the academic and skill learning performance, motivations, and cognitive loads of the two groups. In each implementation dimension, this study also compared the performance of the students with different cognitive styles in experimental and control groups. The results found that the academic and skill learning performance, and learning motivations were significantly promoted and the cognitive loads were remarkably improved no matter in the experimental or control group. Furthermore, this study found that the field-independent students outperformed the field-dependent students in part implementation dimensions. This study have discussed the results in depth and provided some implications as well as suggestions for future studies.
一、中文部分
施能木、黃能堂(2008)。應用樂高教學方案在國小生活科技課程對學童創造力影響之研究。國立台灣師範大學工業科技教育學系博士學位論文,未出版,台北。
陳嘉斌、張玉山(2010)。網路同步學習對不同學習風格學生科技概念學習之影響。國立臺灣師範大學科技應用與人力資源發展學系碩士論文,未出版,台北。
黃國斌、張玉山(2012)。虛擬實境教學模組對國中生產品認知與創意設計表現的影響之研究。國立臺灣師範大學科技應用與人力資源發展學系碩士論文,未出版,台北。
蔡學偉、蕭顯勝(2003)。問題導向學習於網路輔助電腦樂高課程之研究。 國立臺灣師範大學工業科技教育學系碩士論文。 未出版,台北。
白聖彰、上官百祥(2011)。國中生活科技融入自然科教學設計之行動研究。臺灣師範大學科技應用與人力資源發展學系碩士論文,台北市。
游光昭、蔡福興(2004)。以認知型態為基礎的網路化學習研究。教育研究資訊,12(1),51-76。
陳立桓、蘇照雅(2005)。網路化學習的多媒體呈現方式與認知風格對學習者影響之研究。 國立臺灣師範大學工業科技教育學系碩士論文。 未出版,台北。
雄治剛、陳鴻裕(2003)。高雄市國民小學運用資訊科技融入自然與生活科技領域實地教學之評估。科技教育課程改革與發展學術研討會論文集,147-155。
邱柏升、林大正、陳宗禧(2006)。情境感知無所不在學習環境之設計與實作-以國小自然與生活科技領域為例。上網日期:2014年9月20日。檢自:http://ccnet.km.nccu.edu.tw/xms/read_attach.php?id=42。
孫春在(2001)。虛擬中學數學學習館-子計畫VI:數學網路教學資源分享與推薦系統之研究。上網日期:2014年9月20日。檢自:http://www.http://ir.nctu.edu.tw/handle/11536/95264。
財團法人資訊工業策進會(2012)。數位學習與典藏成果彙編。台北:經濟部工業局。
教育部(2014a)。103年自然領域初階教學知能。上網日期:2014年9月20日。檢自:http://www.naer.edu.tw/files/15-1000-5619,c249-1.php?Lang=zh-tw。
教育部(2014b)。十二年國民基本教育課程發展建議書。上網日期:2014年9月20日。檢自:http://www.naer.edu.tw/files/15-1000-5619,c249-1.php?Lang=zh-tw。
許耀升、羅希哲(2007)。智慧型PDA融入國民中學自然與生活科技領域教學之行動研究。科學教育,296,2-17。
鐘建坪(2012)。初探凱利方格技術診斷力概念之心智模型。上網日期:2014年9月20日。檢自:http://ir.lib.ntnu.edu.tw/retrieve/74320/ntnulib_ja_L1001_6401_103.pdf 。
二、外文部分
Abhishekh, D., Reddy, B., R., & Kumar, R. R. (2013). Augmented reality based approach in educational field using AR books. Publications of Problems & Application in Engineering Research, 4(1), 243-246.
Angeli, C. (2013). Examining the effects of field dependence–independence on learners' problem-solving performance and interaction with a computer modeling tool: Implications for the design of joint cognitive systems. Computers & Education, 62, 221-230.
Angeli, C., Valanides, N., & Kirschner, P. (2009). Field dependence– independence and instructional-design effects on learners’ performance with a computer-modeling tool. Computers in Human Behavior, 25(6), 1355-1366.
Azuma, R. T. (1997). A survey of augmented reality. Presence, 6(4), 355-385.
Buder, J., & Schwind, C. (2012). Learning with personalized recommender systems: A psychological view. Computers in Human Behavior, 28(1), 207-216.
Burnett III, W. C. (2010). Cognitive style: A meta-analysis of the instructional implications for various integrated computer enhanced learning environments. Indiana University of Pennsylvania.
Chen, D. R., Chen, M.Y., Huang, T. C., & Hsu, W. P. (2013). Developing a Mobile Learning System in Augmented Reality Context. International Journal of Distributed Sensor Networks.
Chu, H. C., Hwang, G. J., Huang, S. X., & Wu, T. T. (2008). A knowledge engineering approach to developing e-libraries for mobile learning. Electronic Library, The, 26(3), 303-317.
Chu, H. C. (2014). Potential negative effects of mobile learning on students' learning achievement and cognitive load—a format assessment perspective. Journal of Educational Technology & Society, 17(1), 332-344.
Chu, H. C., Hwang, G. J., & Tsai, C. C. (2010). A knowledge engineering approach to developing mindtools for context-aware ubiquitous learning. Computers & Education, 54(1), 289-297.
Chu, H. C., Hwang, G. J., & Tsai, C. C., & Tseng, J. C. (2010). A two-tier test approach to developing location-aware mobile learning systems for natural science courses. Computers & Education, 55(4), 1618-1627.
Cleger, S., Fernández-Luna, J. M., & Huete, J. F. (2014). Learning from explanations in recommender systems. Information Sciences, 287, 90-108.
Crespo, R. G., Martinez, O. S., Lovelle, J. M. C., Garcia-Bustelo, B. C. P., Gayo, J. E. L., & de Pablos, P. O. (2011). Recommendation System based on user interaction data applied to intelligent electronic books. Computers in Human Behavior, 27(4), 1445-1449.
Eccles, J. S, & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual review of psychology, 53(1), 109-132.
Garrett, R. M. (1989). Problem‐solving and Cognitive Style. Research in Science & Technological Education, 7(1), 27-44.
Gong, S. (2012). Learning User Interest Model for Content-based Filtering in Personalized Recommendation System. International Journal of Digital Content Technology & its Applications, 6(11).
Hall, J. K. (2000). Field dependence-independence and computer-based instruction in geography. Virginia Polytechnic Institute and State University.
Henry, P. (2001). E-learning technology, content and services. Education +Training, 43(4), pp. 249-255.
Hinz, J. D. O., & Eckert, D. K. J. (2010). The Impact of Search and Recommendation Systems on Sales in Electronic Commerce. Business & Information Systems Engineering, 2(2), 67-77.
Hsu, C. C., Chen, H. C., Huang, K. K., & Huang, Y. M. (2012). A personalized auxiliary material recommendation system based on learning style on Facebook applying an artificial bee colony algorithm. Computers & Mathematics with Applications, 64(5), 1506-1513.
Hsu, C. K., Hwang, G. J., & Chang, C. K. (2010). Development of a reading material recommendation system based on a knowledge engineering approach. Computers & Education, 55(1), 76-83.
Hsu, C. K., Hwang, G. J., & Chang, C. K. (2013). A personalized recommendation-based mobile learning approach to improving the reading performance of EFL students. Computers & Education, 63, 327-336.
Hsu, C. K., & Hwang, G. J. (2014). A context-aware ubiquitous learning approach for providing instant learning support in personal computer assembly activities. Interactive Learning Environments, 22(6), 687-703
Huang, Y. M., Liu, C. H., Lee, C. Y., & Huang, Y. M. (2012). Designing a Personalized Guide Recommendation System to Mitigate Information Overload in Museum Learning. Educational Technology & Society, 15(4), 150-166.
Hwang, G. J., Yang, L. H., & Wang, S. Y. (2013). A concept map-embedded educational computer game for improving students' learning performance in natural science courses. Computers & Education, 69, 121-130.
Johnson, L., Adams Becker, S., Cummins, M., Estrada, V., Freeman, A., & Ludgate, H. (2013). NMC Horizon Report: 2013 Higher Education Edition. Austin, TX: The New Media Consortium.
Johnson, L., Adams, S., & Cummins, M. (2010). Horizon Report : 2012 Higher Education Edition. Austin, TX: The New Media Consortium.
Johnson, L., Adams, S., & Cummins, M. (2012). The NMC Horizon Report: 2012 Higher Education Edition. Austin, TX: The New Media Consortium.
Johnson, L., Smith, R., Willis, H., Levine, A., & Haywood, K. (2011). The 2011 Horizon Report. Austin, TX: The New Media Consortium.
Jonaaaen, D. H., Carr, C., & Yueh, H. P. (1998). Computers as Mindtools for Engaging Learners in Critical Thinking.TechTrends, 43(2),24-32.
Kaklauskas, A., Zavadskas, E. K., Trinkunas, V., Tupenaite, L., Cerkauskas, J., & Kazokaitis, P. (2012). Recommender system to research students’ study efficiency. Procedia-Social and Behavioral Sciences, 51, 980-984.
Kahneman, D. (1973). Attention and effort (p. 246). Englewood Cliffs, NJ: Prentice-Hall.
Kelly, M. J. (1955). Training programs of industry for graduate engineers. Electrical Engineering, 74(10), 866-869.
Kuo, F. R, Hwang, G. J., Chen, S. C., & Chen, S. Y. (2012). A cognitive apprenticeship approach to facilitating web-based collaborative problem solving. Journal of Educational Technology & Society, 15(4), 319-331.
Lee, J., & Kim, D. G. (2012). Adaptive Learning System Applied Bruner’ EIS Theory. IERI Procedia, 2, 794-801.
Lee, K. (2012). Augmented reality in education and training. TechTrends, 56(2), 13-21.
Lin, C. T., Hong, W. C., Chen, Y. F., & Dong, Y. C. (2010). Application of salesman-like recommendation system in 3G mobile phone online shopping decision support. Expert Systems with Applications, 37(12), 8065-8078.
Liu, C. C., & Lee, J. H. (2005). Prompting conceptual understanding with computer‐mediated peer discourse and knowledge acquisition techniques. British Journal of Educational Technology, 36(5), 821-837.
Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational psychologist, 38(1), 43-52.
Mak, B., Sim, J., Sockel, H., & Sands, B. L. (2011). Towards a Model of the Acceptance of Information Technology Learning: The Role of Extrinsic and Intrinsic Motivation. Journal of Information Processing and Management, 2(4), 22-33.
Melville, P., Mooney, R. J., & Nagarajan, R. (2002). Content-boosted collaborative filtering for improved recommendations. Paper presented at the AAAI/IAAI,187-192.
Messick, S. (1984). The nature of cognitive styles: Problems and promise in educational practice. Educational psychologist, 19(2), 59-74.
Pintrich, P. R. & Schunk, D. H. (1996). Motivation in Education: Theory, Research, and Applications. Prentice-Hall, Inc. A Simon & Schuster Company.
Pintrich, P. R., Smith, D. A. F., Garcia, T., & McKeachie, W. J. (1991). A manual for the use of the motivated strategies for learning questionnaire (MSLQ). Ann Arbor: University of Michigan.
Reitmayr, G., & Schmalstieg, D. (2001). Mobile collaborative augmented reality. Paper presented at the Augmented Reality, 2001. Proceedings. IEEE and ACM International Symposium on,114-123.
Rittschof, K. A. (2010). Field dependence–independence as visuospatial and executive functioning in working memory: implications for instructional systems design and research. Educational Technology Research and Development, 58(1), 99-114.
Santos, O. C., Boticario, J. G., & Pérez-Marín, Diana. (2014). Extending web-based educational systems with personalised support through User Centred Designed recommendations along the e-learning life cycle. Science of Computer Programming, 88, 92-109.
Santschi, L., Hanner, R. H., Ratnasingham, S., Riconscente, M., & Imondi., R. (2013). Barcoding Life's Matrix: Translating Biodiversity Genomics into High School Settings to Enhance Life Science Education. PLoS Biology, 11(1), e1001471.
Schunk, D. H., Meece, J. L., & Pintrich, P. R. (2008). Motivation in Education:Theory, Research, and Applications: International Edition. Englisch: Pearson.
Shaw, M. L, & Thomas, L. F. (1978). FOCUS on education—an interactive computer system for the development and analysis of repertory grids. International Journal of Man-Machine Studies, 10(2), 139-173.
Shishehchi, S., Banihashem, S. Y., Zin, N., A. M., Noah, S. A. M., & Malaysia, K. (2012). Ontological approach in knowledge based recommender system to develop the quality of e-learning system. Australian Journal of Basic and Applied Sciences, 6(2), 115-123.
Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10(3), 251-296.
Symeonidis, P., Ntempos, D., & Manolopoulos, Y. (2014). Recommender Systems for Location-based Social Networks.New York: Springer.
Thai-Nghe, N., Drumond, L., Krohn-Grimberghe, A., & Schmidt-Thieme, L. (2010). Recommender system for predicting student performance. Procedia Computer Science, 1(2), 2811-2819.
Treffinger, D. J., Selby, E. C, & Isaksen, S.G. (2008). Understanding individual problem-solving style: A key to learning and applying creative problem solving. Learning and Individual Differences, 18(4), 390-401.
Wang, Z., Yan, S., & Zhang, C. (2011). Active learning with adaptive regularization. Pattern Recognition, 44(10), 2375-2383.
Wei, X., Weng, D., Liu, Y., & Wang, Y. (2015). Teaching based on augmented reality for a technical creative design course. Computers & Education, 81, 221-234
Witkin, H. A., Oltman, P. K., Ruskin, E., & Karp, S. A. (1971). A Manual for the Embedded Figures Test. Palo Alto, Cal.: Consulting Psychologists Press.
Witkin, H. A., Moore, C. A., Goodenough, D.R, & Cox, P. W. (1977). Field-dependent and field-independent cognitive styles and their educational implications. Review of educational research. 2, 1-64.
Yeh, D. Y., & Cheng, C. H. (2015). Recommendation system for popular tourist attractions in Taiwan using Delphi panel and repertory grid techniques. Tourism Management, 46, 164-176.
Zhang, L. F. (2004). Field-dependence/independence: cognitive style or perceptual ability?––validating against thinking styles and academic achievement.Personality and Individual Differences, 37(6), 1295-1311.