簡易檢索 / 詳目顯示

研究生: 邱鈴媛
Chiu, Ling-Yuan
論文名稱: 二維離散小波轉換併合適應性維那濾波法於透地雷達考古之研究
Ground penetrating radar imaging of archaeological targets using two-dimensional discrete wavelet transform with adaptive Wiener filter
指導教授: 鄭懌
Jeng, Yih
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 82
中文關鍵詞: 地球物理探勘透地雷達二維離散小波轉換小波轉換二維適應性維那濾波考古曲冰遺址
論文種類: 學術論文
相關次數: 點閱:216下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 曲冰遺址於1980年代被發現,是一處保存完整的臺灣山地型史前聚落。地下古文物的探勘與挖掘,常需藉助無破壞性的檢測方式。透地雷達探勘法(ground penetrating radar,GPR)因施測方式簡單且無破壞性,常被運用於考古區域的遺址文物探測。但野外採集的透地雷達數據,常因信號與雜波頻帶重疊而使分析者難以做正確判斷。

    本研究以二維離散小波轉換法(2D discrete wavelet transform,2D DWT)結合二維適應性維那濾波(2D adaptive Wiener filter)概念,將透地雷達數據轉換為小波濾波庫子圖(sub-image),再將拆解後的子圖進行更細緻的濾波處理,提高每張子圖的信噪比(signal to noise ratio, S/N ratio),使濾波圖庫的挑選過程更有效率,以得到更佳的重構信號品質,也使地下構造與異常物分布的解讀更容易。

    本研究建立一組含有數個地下異常物反射信號及雜信的模擬透地雷達數據剖面。對於此模型之處理,證明本研究在理論及實務上皆可成功濾除雜信並強化子圖內所需信號。野外實際案例上,針對曲冰遺址兩個區域的測線進行研究方法處理:第一測區為已開挖並回填的遺址文物區,測線經處理後,濾波圖庫內的雜信明顯降低,重構後之數據信噪比提升,其結果與遺址分布圖中的掩埋文物位置相當。第二測區為遺址北方未開挖的林間空地,處理結果亦可有效降低各子圖雜信,並強化數據中原本被雜信覆蓋的微弱反射信號,進一步推論該處可能掩埋有地下文物。

    本研究對地球物理探勘提供一個新的透地雷達數據處理方法,可有效提高數據的信噪比,亦可強化原本被雜信覆蓋的反射信號,將其保留進行重構,以提高重構數據的信號品質。此外,也可利用本研究方法對曲冰遺址文物回填區進行追蹤,確保回填文物掩埋位置經多年後是否有所變動,亦或是進一步探測遺址周圍,評估再次進行考古挖掘的可能性,以建立更完整的臺灣史前文化族群架構。

    著作權聲明:
    作者保留本論文在學術期刊及教學媒體發表之版權

    致 謝...............................I 摘 要.............................III 目 錄...............................V 圖 目.............................VII 表 目.............................XII 第一章 緒論..........................1 1-1 研究動機與目的 1 1-2 文獻探討 3 1-3 研究架構 5 1-4 資料處理流程 6 第二章 研究方法.......................8 2-1 透地雷達基本理論 8 2-1-1 透地雷達簡介 8 2-1-2 透地雷達探測解析能力 11 2-2 小波基本理論 13 2-2-1 連續小波轉換 13 2-2-2 離散小波轉換 16 2-2-3 二維離散小波轉換 18 第三章 模型建立與分析...............24 3-1 異常物反射模型建立 24 3-2 模型信號之拆解與分析 26 第四章 曲冰遺址測區環境介紹............34 4-1 曲冰遺址地理位置及地質背景 34 4-2 曲冰遺址發掘與歷史定位 36 4-2-1 遺址發掘紀錄 36 4-2-2 遺址歷史定位 40 4-3 曲冰遺址現況 43 第五章 野外資料處理分析與討論..........46 5-1 測勘儀器介紹 46 5-2 測線規畫與參數設定 48 5-2-1 野外測線規劃與施測程序 48 5-2-2 研究測線參數設定 53 5-3 第一測區數據處理分析與討論 54 5-3-1 測線數據處理分析 54 5-3-2 處理結果與討論 63 5-4 第二測區數據處理分析與討論 66 5-4-1 測線數據處理分析 66 5-4-2 處理結果與討論 74 第六章 結論..........................76 參考文獻.............................78

    Carrozzo, M. T., R. De Franco, L. De Luca, D. Luzio, R. Primiceri, T. Quarta, and M. Vitale, 2002, Wavelet correlation filter for wideangle seismic data, Geophysical Prospecting, 50, 547-564.

    Chen, C.-S., and Y. Jeng, 2011, Nonlinear data processing method for the signal enhancement of GPR data, Journal of Applied Geophysics, 75, 113-123.

    Dabas, M., C. Camerlynck, and P. F. Camps, 2000, Simultaneous use of electrostatic quadrupole and GPR in urban context: Investigation of the basement of the Cathedral of Girona, Geophysics, 65, 526-532.

    Daubechies, I., 1992, Ten lectures on wavelet, , CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics Press, 61, 357pp.

    da Silva Cezar, G., P. L. Ferrucio da Rocha, A. Buarque, and A. da Costa, 2001, Two Brazilian archaeological sites investigated by GPR: Serrano and Morro Grande, Journal of Applied Geophysics, 47, 227-240.

    Debnath, L., 2002, Wavelet transforms and their applications, Birkhauser.

    Deighan, A. J., and D. R. Watts, 1997, Ground-roll suppression using the wavelet transform, Geophysics, 62, 1896-1903.

    Fedi, M., L. Lenarduzzi, R. Primiceri, and T. Quarta, 2000, Localized denoising filtering using the wavelet transform, Pure and Applied Geophysics, 157, 1463-1491.

    Grubb, H. J., and A. T. Walden, 1997, Characterizing seismic time series using the discrete wavelet transform, Geophysical Prospecting, 45, 183-205.

    Hermance, J. F., 2001, Ground-penetrating radar: Postmigration stacking of n-fold common midpoint profile data, Geophysics, 66, 379-388.

    Hubbard, B. B., 1998, The world according to wavelet:the story of a mathematical technique in the making, A. K. Peters, 330pp.

    Irving, J. D., and R. J. Knight, 2003, Removal of wavelet dispersion from Ground-penetrating radar data, Geophysics, 68, 960-970.

    Jeng, Y., and C.-S. Chen, 2011, A nonlinear method of removing harmonic noise ingeophysical data, Nonlinear Processes in Geophysics, 18, 367-379.

    Jeng, Y., C.-H. Lin, Y.-W. Li, C.-S. Chen, and H.-M. Yu, 2011, Application of sub-image multiresolution analysis of ground-penetrating radar data in a study of shallow structures, Journal of Applied Geophysics, 73, 251-260.

    Jeng, Y., Y.-W. Li, C.-S. Chen, and H.-Y. Chien, 2009, Adaptive filtering of random noise in near-surface seismic and ground-penetrating radar data, Journal of Applied Geophysics, 68, 36-46.

    Jordan, T. E., G. S. Baker, K. Henn, and J. P. Messier, 2004, Using amplitude variation with offset and normalized residual polarization analysis of ground penetrating radar data to differentiate an NAPL release from stratigraphic changes, Journal of Applied Geophysics, 56, 41-58.

    Knapp, R. W., and D. W. Steeples, 1986, High-resolution common-depth-point seismic reflection profiling: Field acquisition parameter design, Geophysics, 51, 283-294.

    Kumar, P., and E. Foufoula-Georgiou, 1994, Wavelets in geophysics, Academic Press Inc., 380pp.

    Lien, Chao-mei, 1989, The Inter-relationship of Taiwan’s Prehistoric Archaeology and Ethnology, Anthropological and Prospects, Department of Anthropology, National Taiwan University, 188-190.

    Liu, L., and Y. Li, 2001, Identification of liquefaction and deformation features using ground penetrating radar in the New Madrid seismic zone, Journal of Applied Geophysics, 47, 199-215.

    Mallat, S. G., 1989, A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, IEEE Transactions Pattern Recognition and Machine Intelligence, 11, 674-693.

    Matos, M. d., and P. M. Osorio, 2002, Wavelet transform filitering in the 1D and 2D for ground roll suppression, Society of Exploration Geophysicists, 2245-2248.

    Meyer, J. P., N. J. Allen, and I. R. Gellatly, 1990, Affective and continuance commitment to the organization: Evaluation of measures and analysis of concurrent and time-lagged relations, Journal of Applied Psychology, 75, 710-720.

    Misiti, M., Y. Misiti, G. Oppenheim, and J. M. Poggi, 1996, Wavelet Toolbox For Use with MATLAB: user's Guide version 1 , The Mathworks, Inc.

    Nuzzo, L., and T. Quarta, 2004, Improvement in GPR coherent noise attenuation using τ - p and wavelet transforms, Geophysics, 69, 789-802.

    Radzevicius, S. J., E. D. Guy, and J.J. Daniels, 2000, Pitfalls in GPR data interpretation:Differentiating stratigraphy and buried objects from periodic antenna and targeteffects, Geophysical Research Letters, 27, 3393-3396.

    Whiting, B. M., D. P. McFarland, and S. Hackenberger, 2001, Three-dimensional GPR study of a prehistoric site in Barbados, Journal of Applied Geophysics, 47, 217-226.

    Widess, M. B., 1973, How thin is a thin bed, Geophysics, 38, 1176-1180.

    Yoder, R. E., R. S. Freeland, J. T. Ammons, and L. L. Leonard, 2001, Mapping agricultural fields with GPR and EMI to identify offsite movement of agrochemicals, Journal of Applied Geophysics, 47, 251-259.

    Zeng, X., and G. A. McMechan, 1997, GPR characterization of buried tanks and pipes, Geophysics, 62, 797-806.

    石璋如、劉益昌,1987,大馬璘,中央研究院歷史語言研究所專刊,89

    宋文薰、連照美,1979,臺灣史前文化層序(圖表及說明),台南市民族文物館

    李玉龍,1999,曲冰遺址之地磁特性分析,碩士論文,國立臺灣師範大學地球科學研究所

    李宏偉,2007,視覺意識中的線性與非線性功能連結,博士論文,國立政治大學心理學研究所

    何春蓀,1997,臺灣地質概論,經濟部中央地質調查所

    林俊宏,2006,透地雷達數據之2D小波圖形化重構濾波,碩士論文,國立臺灣師範大學地球科學研究所

    唐周宜,2005,透地雷達測勘之小波與希伯特轉換整合分析,碩士論文,國立臺灣師範大學地球科學研究所

    陳立展,2011,透地雷達探測瀝青鋪面下之構造,碩士論文,國立臺灣師範大學地球科學研究所

    陳仲玉,1994,曲冰,中央研究院歷史語言研究所

    陳仲玉,2010,論臺灣高山地區的史前聚落-以曲冰遺址為例,東南文化,214,70-76.

    陳志松,2011,反射探勘數據重建及其淺層地質應用,博士論文,國立臺灣師範大學地球科學研究所

    陳志松、鄭懌、陳立展,2011,透地雷達探勘地質構造的新資料處理方法,臺灣鑛業,63,13-24.

    張君仰,2004,透地雷達於古蹟探測之應用,碩士論文,國立成功大學土木工程研究所

    黃志銘,2008,以透地雷達法檢測鋪面厚度及其下方掏空狀況,碩士論文,朝陽科技大學營建工程系

    楊潔豪、陳兆年、王仲宇、林銘郎,1997,透地雷達探測技術與其在土木工程上之非破壞檢測應用,檢測技術,15,106-119.

    厲以壯,1991,洞角遺址暨相關問題之研究,碩士論文,國立臺灣大學人類學研究所

    劉益昌,2001,臺灣史前文化與原住民族,臺灣立報http://www.lihpao.com/?action-viewnews-itemid-59359,點閱日期2012.02.13

    鄭軒儒,2004,淺層磁力測勘之小波分析,碩士論文,國立臺灣師範大學地球科學研究所

    QR CODE