研究生: |
陳惠媚 CHEN, Hui-Mei |
---|---|
論文名稱: |
以期望確認理論探討消費者對智慧手錶的體驗價值與持續使用意願之研究 Research on Consumers' Experience Value and Continuous Intention to Use Smart Watches Based on Expectation Confirmation Theory |
指導教授: |
洪榮昭
Hong, Jon-Chao |
口試委員: |
洪榮昭
HONG, Jon-Chao 李懿芳 Li, Yi-Fang 林博文 Lin, Bo-Wen |
口試日期: | 2021/06/23 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系科技應用管理碩士在職專班 Department of Industrial Education_Continuing Education Master's Program of Technological Management |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 161 |
中文關鍵詞: | 期望確認理論 、智慧手錶 、科技創新 |
英文關鍵詞: | Expectation Confirmation Theory, Smart Watch, Technological Innovation |
研究方法: | 調查研究 |
DOI URL: | http://doi.org/10.6345/NTNU202100991 |
論文種類: | 學術論文 |
相關次數: | 點閱:256 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
科技創新無處不在,近來,智慧手錶是可穿戴技術領域中的最新且重要的發展,同時也已經變得越來越流行。因此,對於學術研究人員和IT公司而言,了解消費者對這種技術的反應至關重要。本研究使用期望確認理論(ECT)與資訊科技創新意識和人機互動失敗歸因結合,如消費者的感知有用性、確認性、滿意度等作用因素,以探討影響消費者對智慧手錶的持續使用或購買智慧手錶的意願因素。然而在使用智慧手錶時,很少有人關注科技創新在建立用戶持續意願方面的作用。透過針對性的採樣收集有效問卷共416份,並藉由結構方程模型進行驗證性因素分析。研究結果顯示,消費者的資訊科技創新意識與感知有用性和確認性均呈正相關;人機互動失敗歸因與感知有用性和確認性均呈負相關;感知有用性和確認性與滿意度均呈正相關;滿意度與持續意圖呈正相關。此外,本研究發現消費者對智慧手錶最滿意的應用是在安全層面,其中又以曾經使用過3年以上的消費者其感知有用最為明顯,且大多數消費者皆不同意智慧手錶的錶面或字體是造成人機互動失敗的因素。這些結果表明,消費者的持續使用意願不僅取決於人機互動,還取決於消費者的科技創新意識。
Technological innovation is everywhere. Recently, smart watches are the latest and important development in the field of wearable technology, and they have also become more and more popular. Therefore, it is important for academic researchers and IT companies to understand consumers' reactions to this technology. This study uses Expectation Confirmation Theory (ECT) combined with information technology innovation awareness and human-computer interaction failure factors, such as consumers’ perceived usefulness, confirmation, satisfaction and other factors, to explore how consumers continue to use smart watches or the willingness to buy a smart watch. However, when using smart watches, few people pay attention to the role of technological innovation in building users' continued willingness. A total of 416 valid questionnaires were collected through targeted sampling, and confirmatory factor analysis was performed through structural equation modeling. The results of the study show that consumers’ awareness of IT innovation is positively correlated with perceived usefulness and confirmation; human-computer interaction failure factors are negatively correlated with perceived usefulness and confirmation; perceived usefulness, confirmation, and satisfaction are both positive Relevant; satisfaction is positively correlated with continuous intention. In addition, this study found that consumers’ most satisfactory applications for smart watches are on the security level. Among them, consumers who have used them for more than 3 years have the most obvious perception of usefulness, and most consumers disagree with the appearance or appearance of smart watches. The font is the factor that causes the failure of human-computer interaction. These results show that consumers' willingness to continue to use depends not only on human-computer interaction, but also on consumers' awareness of technological innovation.
王致凱(2016)。結合期望確認理論與承諾信任理論探討 Online to Offline 商務網站之持續使用意圖(未出版之碩士論文)。虎尾科技大學,雲林縣。
林子平(2018)。以期望確認理論探討金融科技使用行為之研究(未出版之碩士論文)。國立師範大學,臺北市。
邱皓政(2017)。多元迴歸的自變數比較與多元共線性之影響:效果量、優勢性與相對權數指標的估計與應用。臺大管理論叢,27(3),1-44。
洪佩萱(2019)。使用者對行動裝置健康體能管理應用程式之接受程度與持續使用行為意向(未出版之碩士論文)。國立臺灣師範大學,臺北市。
陳世新(2016)。以科技接受模式的觀點探討技能競賽即時評分系統(未出版之碩士論文)。國立臺灣師範大學,臺北市。
陳順宇(2005)。多變量分析(第四版)。臺北市:華泰。
楊涵淩(2017)。通路應用服務型機器人接受度研究-以Pepper為例(未出版之碩士論文)。國立師範大學,臺北市。
網管人(2016)。Gartner表示2016年全球穿戴式裝置的銷售量將成長18.4%【網管人】。取自 https://www.netadmin.com.tw/netadmin/zh-tw/snapshot/F54FB022D2CA41CAA826AC44B9AA5DF3
劉新榮(2018)。產品設計與科技創新對消費者購買意願之影響-以電子書為例(未出版之碩士論文)。國立高雄第一科技大學,高雄市。
鄭慧萍(2014)。探討護理人員使用條碼科技之創新接受度(未出版之碩士論文)。國立臺北護理健康大學,臺北市。
謝宜軒(2016)。以科技接受模式與創新擴散理論探討UBER之使用意圖(未出版之碩士論文)。國立勤益科技大學,臺中市。
DIGITIMES企劃(2015)。穿戴式裝置技術引導未來應用方向【科技商情】。取自 https://www.digitimes.com.tw/iot/article.asp?cat=130&cat1=50&cat2=15&id=0000416616_dij5kwpz2jho9d53rguxr
Abedi, G., Rostami, F., & Nadi, A. (2015). Analyzing the dimensions of the quality of life in hepatitis B patientsusing confirmatory factor analysis. Global Journal of Health Acience, 7(7), 22-31.
Ahmad, S., Zulkurnain, N. N. A., & Khairushalimi, F. I. (2016). Assessing the fitness of a measurement model using confirmatory factor analysis (CFA). International Journal of Innovation and Applied Studies, 17(1), 159-168.
Ali, H., & Li, H. (2019). Evaluating a smartwatch notification system in a simulated nursing home. International journal of older people nursing, 14(3), e12241.
Aliverti, A. (2017). Wearable technology: role in respiratory health and disease. Breathe, 13(2), e27-e36.
Altman, D. G., & Bland, J. M. (2011). How to obtain the confidence interval from a p value. British Medical Journal, 343, d2090.
Apple. (2020). Apple Watch [Web page]. Retrieved from https://www.apple.com/watch/
Ashton, K. (2009). That ‘internet of things’ thing. RFID journal, 22(7), 97-114.
Bachmann, A., Klebsattel, C., Schankin, A., Riedel, T., Beigl, M., Reichert, M., Santangelo, P., Ebner-Priemer, U. (2015, September). Leveraging smartwatches for unobtrusive mobile ambulatory mood assessment. Paper presented at the Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan.
Barfield, W. (2015). Fundamentals of wearable computers and augmented reality. Florida, USA: CRC press.
Bargas-Avila, J., & Hornbæk, K. (2012). Foci and blind spots in user experience research. interactions, 19(6), 24-27.
Barnard, L., Yi, J. S., Jacko, J. A., & Sears, A. (2005). An empirical comparison of use-in-motion evaluation scenarios for mobile computing devices. International Journal of Human-Computer Studies, 62(4), 487-520.
Barrie, J. (2015, April). The $20,000 gold Apple Watch Edition sold out in China in less than an hour. Business Insider. Retrieved from https://www.businessinsider.com/apple-watch-edition-sold-out-in-china-2015-4
Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS quarterly, 25(3), 351-370.
Bhattacherjee, A., & Barfar, A. (2011). Information technology continuance research: current state and future directions. Asia Pacific Journal of Information Systems, 21(2), 1-18. Retrieved from http://apjis.or.kr/pdf/MIS021-002-1.pdf
Bhattacherjee, A., & Premkumar, G. (2004). Understanding changes in belief and attitude toward information technology usage: A theoretical model and longitudinal test. MIS quarterly, 229-254.
Billinghurst, M., & Busse, D. (2015,January). Rapid prototyping for wearables: concept design and development for head-and wrist-mounted wearables (smart watches and google glass). Paper presented at the Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction, Stanford California, USA.
Cecchinato, M. E., Cox, A. L., & Bird, J. (2015, April). Smartwatches: the Good, the Bad and the Ugly? Paper presented at the Proceedings of the 33rd Annual ACM Conference extended abstracts on human factors in computing systems, New York, USA.
Chen, C.-C., & Shih, H.-S. (2014). A study of the acceptance of wearable technology for consumers: an analytical network process perspective. International Journal of the Analytic Hierarchy Process, 29, 1-5. Retrieved from https://www.isahp.org/uploads/p729838.pdf
Chen, M., Ma, Y., Li, Y., Wu, D., Zhang, Y., & Youn, C.-H. (2017). Wearable 2.0: Enabling human-cloud integration in next generation healthcare systems. IEEE Communications Magazine, 55(1), 54-61.
Chen, M. Y., Lughofer, E. D., & Hsiao, K. L. (2013). Android smartphone adoption and intention to pay for mobile internet. Library Hi Tech, 31(2).
Chen, S.-C., Liu, M.-L., & Lin, C.-P. (2013). Integrating technology readiness into the expectation–confirmation model: An empirical study of mobile services. Cyberpsychology, Behavior, and Social Networking, 16(8), 604-612.
Cheng, J. W., & Mitomo, H. (2017). The underlying factors of the perceived usefulness of using smart wearable devices for disaster applications. Telematics and Informatics, 34(2), 528-539.
Cheng, Y. M. (2014). Extending the expectation-confirmation model with quality and flow to explore nurses’ continued blended e-learning intention. Information Technology & People, 27(3), 230-258.
Choi, J., & Kim, S. (2016). Is the smartwatch an IT product or a fashion product? A study on factors affecting the intention to use smartwatches. Computers in Human Behavior, 63, 777-786.
Clawson, J., Starner, T., Kohlsdorf, D., Quigley, D. P., & Gilliland, S. (2014, September). Texting while walking: an evaluation of mini-qwerty text input while on-the-go. Paper presented at the Proceedings of the 16th international conference on Human-computer interaction with mobile devices & services, New York, USA.
Coccia, M. (2016). Radical innovations as drivers of breakthroughs: characteristics and properties of the management of technology leading to superior organisational performance in the discovery process of R&D labs. Technology Analysis & Strategic Management, 28(4), 381-395.
Coccia, M. (2017a). Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technology Analysis & Strategic Management, 29(9), 1048-1061.
Coccia, M. (2017b). Theorem of not independence of any technological innovation-Philosophical and theoretical foundations of the evolution of technology [Web page]. Retrieved from https://papers.ssrn.com/Sol3/papers.cfm?abstract_id=2971691
Coccia, M. (2019). The theory of technological parasitism for the measurement of the evolution of technology and technological forecasting. Technological forecasting and social change, 141, 289-304.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ, USA: Lawrence Erlbaum.
Cor, M. K. (2016). Trust me, it is valid: Research validity in pharmacy education research. Currents in Pharmacy Teaching and Learning, 8(3), 391-400.
Damanpour, F. (1996). Organizational complexity and innovation: developing and testing multiple contingency models. Management science, 42(5), 693-716.
Dance, J. (2008). What is Innovation? 30+ definitions lead to one fresh summary, Washington, DC, USA: Fresh Thinking that Creates Value. In.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 13(3), 319-340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
de Sousa Monteiro, B., Gomes, A. S., & Neto, F. M. M. (2016). Youubi: Open software for ubiquitous learning. Computers in Human Behavior, 55, 1145-1164.
Dehghani, M., & Dangelico, R. M. (2017, May). Smart wearable technologies: Current status and market orientation through a patent analysis. Paper presented at the 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada.
DeVellis, R. F. (2016). Scale development: Theory and applications (Vol. 26). Los Angeles, CA, USA: Sage publications.
Domina, T., Lee, S. E., & MacGillivray, M. (2012). Understanding factors affecting consumer intention to shop in a virtual world. Journal of retailing and consumer services, 19(6), 613-620.
Dubey, H., Goldberg, J. C., Abtahi, M., Mahler, L., & Mankodiya, K. (2015). EchoWear: smartwatch technology for voice and speech treatments of patients with Parkinson's disease. Proceedings of the conference on Wireless Health. Retrieved from https://digitalcommons.uri.edu/ele_facpubs/74/
Elgan, M. (2013). Will women dominate the wearable computing market. Cult of Android. Retrieved from https://www.cultofandroid.com/44705/will-women-dominate-the-wearable-computing-market/
Fernandez, P. (2014). Wearable technology: beyond augmented reality. Library Hi Tech News, 31(9).
Ferreira, P. C., Ataide, V. N., Chagas, C. L. S., Angnes, L., Coltro, W. K. T., Paixão, T. R. L. C., & de Araujo, W. R. (2019). Wearable electrochemical sensors for forensic and clinical applications. TrAC Trends in Analytical Chemistry, 119, 115622.
Festinger, L. (1957). A theory of cognitive dissonance (Vol. 2). California,USA: Stanford university press.
Fisher, J. C., & Pry, R. H. (1971). A simple substitution model of technological change. Technological forecasting and social change, 3, 75-88.
Fitbit. (2014). ChargeHR [Web page]. Retrieved from https://www.fitbit.com/global/us/products#specs
Fitbit. (2020). Fitbit Smart Watch [Web page]. Retrieved from https://www.fitbit.com/pebbleAccessed
Forrest, J. Y.-L., Lin, C., Mondal, S., & Tucker, R. (2019). Environmental forces underneath the innovativeness of manufacturing firms. Theoretical Economics Letters, 9(05), 1353.
Gao, Y. (2002). Linking information content, presentation attributes, and system design features with consumer attitudes in hypermedia commercial presentations. City University of New York,
Gayathri, K., Easwarakumar, K., & Elias, S. (2017). Probabilistic ontology based activity recognition in smart homes using Markov Logic Network. Knowledge-Based Systems, 121, 173-184.
Gero, J. S., & Kannengiesser, U. (2004). The situated function–behaviour–structure framework. Design Studies, 25(4), 373-391.
Golob, T. F. (2003). Structural equation modeling for travel behavior research. Transportation Research Part B: Methodological, 37(1), 1-25.
Google. (2014). Google Glass Technical specifications [Web page]. Retrieved from https://support.google.com/glass/answer/3064128?hl=en
Green, S. B., & Salkind, N. (2004). Using SPSS for Windows and Macintosh: Analyzing and understanding data (4th ed.). Englewood Cliffs, NJ: Prentice-Hall.
Gupta, S. K. (2012). The relevance of confidence interval and P-value in inferential statistics. Indian Journal of Pharmacology, 44(1), 143-144.
Hair, J. F., Black, W. C., Babin, B. J.,& Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Boston, MA, USA: Cengage.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152.
Ha, T., Beijnon, B., Kim, S., Lee, S., & Kim, J. H. (2017). Examining user perceptions of smartwatch through dynamic topic modeling. Telematics and Informatics, 34(7), 1262-1273.
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135.
Hermsen, S., Frost, J., Renes, R. J., & Kerkhof, P. (2016). Using feedback through digital technology to disrupt and change habitual behavior: A critical review of current literature. Computers in Human Behavior, 57, 61-74.
Hong, W., Thong, J. Y., Wong, W.-M., & Tam, K.-Y. (2002). Determinants of user acceptance of digital libraries: an empirical examination of individual differences and system characteristics. Journal of management information systems, 18(3), 97-124.
Hsiao, K.-L., & Chen, C.-C. (2016). What drives in-app purchase intention for mobile games? An examination of perceived values and loyalty. Electronic Commerce Research and Applications, 16, 18-29.
Hsiao, K.-L., & Chen, C.-C. (2018). What drives smartwatch purchase intention? Perspectives from hardware, software, design, and value. Telematics and Informatics, 35(1), 103-113.
Hung, M.-C., Yang, S.-T., & Hsieh, T.-C. (2012). An examination of the determinants of mobile shopping continuance. International Journal of Electronic Business Management, 10(1), 29. Retrieved from http://203.72.2.146/bitstream/987654321/27104/1/An+Examination.pdf
IDC. (2020). Worldwide Wearables Market Forecast to Maintain Double-Digit Growth in 2020 and Through 2024, According to IDC [Web page]. Retrieved from https://www.idc.com/getdoc.jsp?containerId=prUS46885820
IDC. (2021). Consumer Enthusiasm for Wearable Devices Drives the Market to 28.4% Growth in 2020, According to IDC [Web page]. Retrieved from https://www.idc.com/getdoc.jsp?containerId=prUS47534521
Interactive, H. (2013). Are Americans Prepared to Sport Wearable Tech? [Web page]. Retrieved from https://www.prnewswire.com/news-releases/are-americans-prepared-to-sport-wearable-tech-230786341.html
Iwata, T., Yamabe, T., & Nakajima, T. (2010, October). Towards a mobility enhanced user interface design for multi-task environments: An experimental study on cognitive workload measurement. Paper presented at the 2010 Sixth International Conference on Intelligent Environments, Washington, DC, USA.
Jawbone. (2014). Jawbone Up 2 [Web page]. Retrieved from https://www.sharktank.com.tw/products/jawbone-up-2-br
Jeong, S. C., Kim, S.-H., Park, J. Y., & Choi, B. (2017). Domain-specific innovativeness and new product adoption: A case of wearable devices. Telematics and Informatics, 34(5), 399-412.
Jiang, H., Chen, X., Zhang, S., Zhang, X., Kong, W., & Zhang, T. (2015, September). Software for wearable devices: Challenges and opportunities. Paper presented at the 2015 IEEE 39th Annual Computer Software and Applications Conference, Taichung, Taiwan.
Johnson, P. (1998). Usability and Mobility; Interactions on the move. Paper presented at the Proceedings of the First Workshop on Human-Computer Interaction with Mobile Devices.
Jovanov, E. (2015, 2015/11/05). Preliminary analysis of the use of smartwatches for longitudinal health monitoring. Paper presented at the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy.
Jumaan, I. A., Hashim, N. H., & Al-Ghazali, B. M. (2020). The role of cognitive absorption in predicting mobile internet users’ continuance intention: An extension of the expectation-confirmation model. Technology in Society, 63, 101355.
Jung, Y., Kim, S., & Choi, B. (2016). Consumer valuation of the wearables: The case of smartwatches. Computers in Human Behavior, 63, 899-905.
Kenny, D. A., Kaniskan, B., & McCoach, D. B. (2015). The performance of RMSEA in models with small degrees of freedom. Sociological Methods & Research, 44(3), 486-507.
Khan, Z., Bali, R. K., & Wickramasinghe, N. (2007). Developing a BPI framework and PAM for SMEs. Industrial Management & Data Systems, 107(3).
Kim, K., Hwang, J., Zo, H., & Lee, H. (2016). Understanding users’ continuance intention toward smartphone augmented reality applications. Information Development, 32(2), 161-174.
Kim, K. J., & Shin, D.-H. (2015). An acceptance model for smart watches. Internet Research, 25(4), 123-156..
Kim, J., & Forsythe, S. (2010). Factors affecting adoption of product virtualization technology for online consumer electronics shopping. International Journal of Retail & Distribution Management, 38(3), 190-204.
Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd. ed.). New York, NY, USA: Guilford Press.
Kong, X. T., Luo, H., Huang, G. Q., & Yang, X. (2019). Industrial wearable system: the human-centric empowering technology in Industry 4.0. Journal of Intelligent Manufacturing, 30(8), 2853-2869.
Kortuem, G., Kawsar, F., Sundramoorthy, V., & Fitton, D. (2009). Smart objects as building blocks for the internet of things. IEEE Internet Computing, 14(1), 44-51.
Lamb, S., & Kwok, K. C. S. (2019). The effects of motion sickness and sopite syndrome on office workers in an 18-month field study of tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 186, 105-122.
Lederer, A. L., Maupin, D. J., Sena, M. P., & Zhuang, Y. (2000). The technology acceptance model and the World Wide Web. Decision Support Systems, 29(3), 269-282.
Lee, D. K. (2016). Alternatives to p value: Confidence interval and effect size. Korean Journal of Anesthesiology, 69(6), 555-562.
Lee, H.-M. (2009). A study on the acceptance of wearable computers based on the extended technology acceptance model. The Research Journal of the Costume Culture, 17(6), 1155-1172. Retrieved from https://www.koreascience.or.kr/article/JAKO200910348028941.page
Lee, S. Y. (2014). Examining the factors that influence early adopters’ smartphone adoption: The case of college students. Telematics and Informatics, 31(2), 308-318.
Leonard-Barton, D., & Swap, W. C. (1999). When sparks fly: Igniting creativity in groups. Boston, MA, USA: Harvard Business Press.
Liang, J., Xian, D., Liu, X., Fu, J., Zhang, X., Tang, B., & Lei, J. (2018). Usability study of mainstream wearable fitness devices: feature analysis and system usability scale evaluation. JMIR mHealth and uHealth, 6(11), e11066. Retrieved from https://mhealth.jmir.org/2018/11/e11066
Liébana-Cabanillas, F., Japutra, A., Molinillo, S., Singh, N., & Sinha, N. (2020). Assessment of mobile technology use in the emerging market: Analyzing intention to use m-payment services in India. Telecommunications Policy, 44(9), 102009.
Limayem, M., & Cheung, C. M. (2011). Predicting the continued use of Internet-based learning technologies: the role of habit. Behaviour & Information Technology, 30(1), 91-99.
Limayem, M., Hirt, S. G., & Cheung, C. M. (2007). How habit limits the predictive power of intention: The case of information systems continuance. MIS quarterly, 2, 705-737.
Lin, C.-P., & Bhattacherjee, A. (2008). Elucidating individual intention to use interactive information technologies: The role of network externalities. International Journal of Electronic Commerce, 13(1), 85-108.
Lin, C. S., Wu, S., & Tsai, R. J. (2005). Integrating perceived playfulness into expectation-confirmation model for web portal context. Information & management, 42(5), 683-693.
Lin, J. C.-C. (2007). Online stickiness: its antecedents and effect on purchasing intention. Behaviour & Information Technology, 26(6), 507-516.
Lin, M., Goldman, R., Price, K. J., Sears, A., & Jacko, J. (2007). How do people tap when walking? An empirical investigation of nomadic data entry. International Journal of Human-Computer Studies, 65(9), 759-769.
Liu, L., Peng, Y., Liu, M., & Huang, Z. (2015). Sensor-based human activity recognition system with a multilayered model using time series shapelets. Knowledge-Based Systems, 90, 138-152.
Lu, H.-P., & Hsiao, K.-L. (2010). The influence of extro/introversion on the intention to pay for social networking sites. Information & management, 47(3), 150-157.
Lu, J., Yao, J. E., & Yu, C.-S. (2005). Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. The Journal of Strategic Information Systems, 14(3), 245-268.
Lu, T.-C., Chang, Y.-T., Ho, T.-W., Chen, Y., Lee, Y.-T., Wang, Y.-S., . . . Turner, A. M. (2019). Using a smartwatch with real-time feedback improves the delivery of high-quality cardiopulmonary resuscitation by healthcare professionals. Resuscitation, 140, 16-22.
Lupiani, E., Juarez, J. M., Palma, J., & Marin, R. (2017). Monitoring elderly people at home with temporal case-based reasoning. Knowledge-Based Systems, 134, 116-134.
Lytras, M. D., Mathkour, H. I., Abdalla, H., Al-Halabi, W., Yanez-Marquez, C., & Siqueira, S. W. M. (2015). An emerging–Social and emerging computing enabled philosophical paradigm for collaborative learning systems: Toward high effective next generation learning systems for the knowledge society. Computers in Human Behavior, 51, 557-561.
Magsamen-Conrad, K., Dowd, J., Abuljadail, M., Alsulaiman, S., & Shareefi, A. (2015). Life-span differences in the uses and gratifications of tablets: Implications for older adults. Computers in Human Behavior, 52, 96-106.
Mani, Z., & Chouk, I. (2017). Drivers of consumers’ resistance to smart products. Journal of Marketing Management, 33(1-2), 76-97.
Mann, S. (1996). Smart clothing: The shift to wearable computing. Communications of the ACM, 39(8), 23-24.
Mann, S. (1997). Wearable computing: A first step toward personal imaging. Computer, 30(2), 25-32.
Mencarini, E., Rapp, A., Tirabeni, L., & Zancanaro, M. (2019). Designing wearable systems for sports: A review of trends and opportunities in human–computer interaction. IEEE Transactions on Human-Machine Systems, 49(4), 314-325.
Nelson, R. (2006). Evolutionary social science and universal Darwinism. Journal of evolutionary economics, 16(5), 491-510.
Nike. (2013). Nike+ Sportband Specifications [Web page]. Retrieved from https://secure-nikeplus.nike.com/plus/products/sport_band/
Niknejad, N., Ismail, W. B., Mardani, A., Liao, H., & Ghani, I. (2020). A comprehensive overview of smart wearables: The state of the art literature, recent advances, and future challenges. Engineering Applications of Artificial Intelligence, 90, 103529.
Noor, M. H. M., Salcic, Z., Kevin, I., & Wang, K. (2016). Enhancing ontological reasoning with uncertainty handling for activity recognition. Knowledge-Based Systems, 114, 47-60.
O'brien, T., Troutman-Jordan, M., Hathaway, D., Armstrong, S., & Moore, M. (2015). Acceptability of wristband activity trackers among community dwelling older adults. Geriatric Nursing, 36(2), S21-S25.
Park, D., Lee, J.-H., & Kim, S. (2011). Investigating the affective quality of interactivity by motion feedback in mobile touchscreen user interfaces. International Journal of Human-Computer Studies, 69(12), 839-853.
Park, E. (2020). User acceptance of smart wearable devices: An expectation-confirmation model approach. Telematics and Informatics, 47, 101-318.
Park, E., Baek, S., Ohm, J., & Chang, H. J. (2014). Determinants of player acceptance of mobile social network games: An application of extended technology acceptance model. Telematics and Informatics, 31(1), 3-15.
Park, E., & del Pobil, A. P. (2013). Modeling the user acceptance of long-term evolution (LTE) services. annals of telecommunications-annales des télécommunications, 68(5-6), 307-315.
Park, E., Kim, K. J., & Kwon, S. J. (2016). Understanding the emergence of wearable devices as next-generation tools for health communication. Information Technology & People, 29(4).
Parikh, M., & Verma, S. (2002). Utilizing Internet technologies to support learning: an empirical analysis. International Journal of Information Management, 22(1), 27-46.
Park, S., & Jayaraman, S. (2003). Smart textiles: Wearable electronic systems. MRS bulletin, 28(8), 585-591.
Park, Y., & Chen, J. V. (2007). Acceptance and adoption of the innovative use of smartphone. Industrial Management & Data Systems, 10(9).
Peake, J. M., Kerr, G., & Sullivan, J. P. (2018). A critical review of consumer wearables, mobile applications, and equipment for providing biofeedback, monitoring stress, and sleep in physically active populations. Frontiers in physiology, 9, 743.
Perera, C., & Vasilakos, A. V. (2016). A knowledge-based resource discovery for Internet of Things. Knowledge-Based Systems, 109, 122-136.
Poslad, S. (2011). Ubiquitous computing: smart devices, environments and interactions. Hoboken, New Jersey, USA: John Wiley & Sons.
Price, K. J., Lin, M., Feng, J., Goldman, R., Sears, A., & Jacko, J. A. (2006). Motion does matter: an examination of speech-based text entry on the move. Universal Access in the Information Society, 4(3), 45-60.
Rao, A. K. (2019). Wearable sensor technology to measure physical activity (PA) in the elderly. Current Geriatrics Reports, 8(1), 55-66.
Rau, P. P. (2011). Internationalization, Design and Global Development (Vol. 6775). Orlando, FL, USA: Springer.
Rawassizadeh, R., Momeni, E., Dobbins, C., Mirza-Babaei, P., & Rahnamoun, R. (2015). Lesson learned from collecting quantified self information via mobile and wearable devices. Journal of Sensor and Actuator Networks, 4(4), 315-335.
Repede, J. F., Jeffries, C. J., & Hubbard, E. (1993). ALIAS: A graphical user interface for an ambulance location model. International Journal of Operations & Production Management, 13(12), 222-240.
Rhee, S., Yang, B.-H., & Asada, H. H. (2001). Artifact-resistant power-efficient design of finger-ring plethysmographic sensors. IEEE Transactions on Biomedical Engineering, 48(7), 795-805.
Ribeiro, J. (2014). Samsung expects slower smartphones market growth and competition to hit profits [Web page]. Retrieved from https://www.pcworld.com/article/2451720/samsung-expects-slower-smartphones-market-growth-and-competition-to-hit-profits.html
Rinaldi, R., & Bandinelli, R. (2017). Business Models and ICT Technologies for the Fashion Supply Chain. New York, NY, USA: Springer.
Roca, J. C., Chiu, C.-M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of Human-Computer Studies, 64(8), 683-696.
Rodgers, M. M., Pai, V. M., & Conroy, R. S. (2014). Recent advances in wearable sensors for health monitoring. IEEE Sensors Journal, 15(6), 3119-3126.
Rogers, E. M. (2020). Diffusion of innovations (4th ed.). New York, NY, USA: Simon and Schuster.
Rogers, J., Bao, Z., & Lee, T.-W. (2019). Wearable bioelectronics: opportunities for chemistry. Acc. Chem. Res, 52(3), 521-522. Retrieved from http://rogersgroup.northwestern.edu/files/2019/editorialacr.pdf
Rowley, J. (2011). Should your library have an innovation strategy? Library Management, 32, 251-265.
Samsung. (2014). Samsung Gear Fit Watch [Web page]. Retrieved from http://www.samsung.com/us/mobile/wearable-tech/SM-R3500ZKAXAR
Schierz, P. G., Schilke, O., & Wirtz, B. W. (2010). Understanding consumer acceptance of mobile payment services: An empirical analysis. Electronic Commerce Research and Applications, 9(3), 209-216.
Schildbach, B., & Rukzio, E. (2010, September). Investigating selection and reading performance on a mobile phone while walking. Paper presented at the Proceedings of the 12th international conference on Human computer interaction with mobile devices and services, New York, USA.
Schumpeter, J., & Backhaus, U. (2003). The theory of economic development. In Joseph Alois Schumpeter (pp. 61-116). Boston, MA, USA: Springer.
Sears, A., Lin, M., Jacko, J., & Xiao, Y. (2003, June). When computers fade: Pervasive computing and situationally-induced impairments and disabilities. Paper presented at the HCI international, Crete, Greece.
Starner, T., Mann, S., Rhodes, B., Levine, J., Healey, J., Kirsch, D., . . . Pentland, A. (1997). Augmented reality through wearable computing. Presence: Teleoperators & Virtual Environments, 6(4), 386-398.
Stoet, G., O’Connor, D. B., Conner, M., & Laws, K. R. (2013). Are women better than men at multi-tasking? BMC Psychology, 1(1), 1-10.
Sultan, N. (2015). Reflective thoughts on the potential and challenges of wearable technology for healthcare provision and medical education. International Journal of Information Management, 35(5), 521-526.
Sun, N., & Rau, P.-L. P. (2015). The acceptance of personal health devices among patients with chronic conditions. International journal of medical informatics, 84(4), 288-297.
Tabbakh, T., & Freeland-Graves, J. (2016). Development and validation of the multidimensional home environment scale (MHES) for adolescents and their mothers. Eating Behaviors, 22, 76-82.
Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48(6), 1273-1296.
Talukder, M. S., Chiong, R., Bao, Y., & Malik, B. H. (2019). Acceptance and use predictors of fitness wearable technology and intention to recommend. Industrial Management & Data Systems, 119(1).
Taufik, N., & Hanafiah, M. H. (2019). Airport passengers' adoption behaviour towards self-check-in Kiosk Services: the roles of perceived ease of use, perceived usefulness and need for human interaction. Heliyon, 5(12), e02960.
Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. Washington, DC, USA: American Psychological Association.
Thong, J. Y., Hong, S.-J., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799-810.
Thakur, R., & Srivastava, M. (2014). Adoption readiness, personal innovativeness, perceived risk and usage intention across customer groups for mobile payment services in India. Internet Research, 24(3).
Van Berkel, N., Luo, C., Anagnostopoulos, T., Ferreira, D., Goncalves, J., Hosio, S., & Kostakos, V. (2016, May). A systematic assessment of smartphone usage gaps. Paper presented at the 2016 CHI Conference on Human Factors in Computing Systems, New York, USA.
Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS quarterly, 28, 695-704.
Venkatesh, V., Thong, J. Y., Chan, F. K., Hu, P. J. H., & Brown, S. A. (2011). Extending the two‐stage information systems continuance model: Incorporating UTAUT predictors and the role of context. Information Systems Journal, 21(6), 527-555.
Wang, C.-H. (2015). A market-oriented approach to accomplish product positioning and product recommendation for smart phones and wearable devices. International Journal of Production Research, 53(8), 2542-2553.
Wang, W., Ngai, E. W., & Wei, H. (2012). Explaining instant messaging continuance intention: the role of personality. International Journal of Human-Computer Interaction, 28(8), 500-510.
Wells, J. D., Fuerst, W. L., & Palmer, J. W. (2005). Designing consumer interfaces for experiential tasks: an empirical investigation. European Journal of Information Systems, 14(3), 273-287.
Wen, D., Zhang, X., & Lei, J. (2017). Consumers’ perceived attitudes to wearable devices in health monitoring in China: A survey study. Computer methods and programs in biomedicine, 140, 131-137.
Weng, G. S., Zailani, S., Iranmanesh, M., & Hyun, S. S. (2017). Mobile taxi booking application service’s continuance usage intention by users. Transportation Research Part D: Transport and Environment, 57, 207-216.
Wikipedia. (2015). Nike+ FuelBand [Web page]. Retrieved from https://en.wikipedia.org/wiki/Nike%2B_FuelBand
Wobbrock, J. O. (2006). The future of mobile device research in HCI. Paper presented at the CHI 2006 workshop proceedings, Montréal, Canada.
Woodruff, R. B. (1997). Customer value: the next source for competitive advantage. Journal of the Academy of Marketing Science, 25(2), 139. Retrieved from https://link.springer.com/article/10.1007/BF02894350
Wright, R., & Keith, L. (2014). Wearable technology: If the tech fits, wear it. Journal of Electronic Resources in Medical Libraries, 11(4), 204-216.
Wu, L.-H., Wu, L.-C., & Chang, S.-C. (2016). Exploring consumers’ intention to accept smartwatch. Computers in Human Behavior, 64, 383-392.
Wu, Q., Sum, K., & Nathan-Roberts, D. (2016, September). How fitness trackers facilitate health behavior change. Paper presented at the Proceedings of the Human Factors and Ergonomics Society Annual Meeting., Washington, DC, USA.
Yang, H., Yu, J., Zo, H., & Choi, M. (2016). User acceptance of wearable devices: An extended perspective of perceived value. Telematics and Informatics, 33(2), 256-269.
Yang, K. C. (2005). Exploring factors affecting the adoption of mobile commerce in Singapore. Telematics and Informatics, 22(3), 257-277.
Yang, S., Lu, Y., Gupta, S., Cao, Y., & Zhang, R. (2012). Mobile payment services adoption across time: An empirical study of the effects of behavioral beliefs, social influences, and personal traits. Computers in Human Behavior, 28(1), 129-142.
Yi, M. Y., Fiedler, K. D., & Park, J. S. (2006). Understanding the role of individual innovativeness in the acceptance of IT‐based innovations: Comparative analyses of models and measures. Decision Sciences, 37(3), 393-426.
Yu, J., Lee, H., Ha, I., & Zo, H. (2017). User acceptance of media tablets: An empirical examination of perceived value. Telematics and Informatics, 34(4), 206-223.
Zainudin, A. (2015). SEM made simple, a gentle approach to learning structural equation modeling. Selangor, MY: MPWS Rich Publication.
Zhang, P., & Li, N. (2004). An assessment of human–computer interaction research in management information systems: topics and methods. Computers in Human Behavior, 20(2), 125-147.
Zhao, Y., & You, Y. (2020). Design and data analysis of wearable sports posture measurement system based on Internet of Things. Alexandria Engineering Journal.
Zhong, Y., Oh, S., & Moon, H. C. (2021). Service transformation under industry 4.0: Investigating acceptance of facial recognition payment through an extended technology acceptance model. Technology in Society, 64, 101515.