簡易檢索 / 詳目顯示

研究生: 張皓晴
Chang, Hao-Ching
論文名稱: 軸位配基可置換之三角雙錐三價銅錯合物的電子結構及反應特性
Electronic Structure and Reactivity of Trigonal Bipyramidal Copper(III) Complexes with an Exchangeable Axial Ligand
指導教授: 李位仁
Lee, Way-Zen
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 121
中文關鍵詞: 三角雙錐三價銅配位基親和力X-ray吸收碳—氰鍵裂解密度泛函理論
英文關鍵詞: trigonal copper(III), ligand affinity, X-ray absorption, C–CN bond cleavage, density-functional theory
DOI URL: https://doi.org/10.6345/NTNU202204761
論文種類: 學術論文
相關次數: 點閱:117下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究承繼實驗室先前的工作,合成出三角雙錐構形的三價銅錯合物[PPN][Cu(TMSPS3)(Cl)] (錯合物1)。根據製備條件與錯合物1產率的關係以及DFT理論計算的結果,推測錯合物1和一同生成的一價銅副產物,是經由TMSPS3–Cu2Cl4中間體,進行熱力學驅動之二價銅自身氧化還原反應而產生。藉UV–vis光譜監測錯合物1與外加配基的滴定,結果符合配位基與氯離子的1:1置換平衡反應,而不同配位基之相對結合常數為:N3− (Keq = 18)、DABCO (8)、pyridine (0.13)、2,6-lutidine (0.0010),此結果也解釋了錯合物1在溶液中的半穩定性質。據此進而合成了軸位配基衍生之錯合物:[PPN][Cu(TMSPS3)(N3)] (錯合物2)、[Cu(TMSPS3)(DABCO)] (錯合物3)和[PPN][Cu(TMSPS3)(NCS/Cl)] (錯合物4/1)。量測錯合物1–3之銅和硫元素的X-ray K-edge吸收光譜,可證實:銅離子的正三價氧化態、三角雙錐配位場造成錯合物LUMO(3dz2貢獻)的抬升、及銅—硫之間的高度共價性。這些結果指出Cu(TMSPS3)配位基團內的電子密度補償效應 (S→Cu),一方面穩定了中心的三價銅離子,一方面也削弱了其軸位配基結合對靜電作用的需求。氰根配位的衍生物 [PPN][Cu(TMSPS3)(CN)] (錯合物5) 是由錯合物1和NaOH於CH3CN中反應而得;並藉NMR、UV–vis、IR等光譜跡象歸結:應有cyanomethide配位的三價銅中間體存在,從而引發CH3CN溶劑的C–CN鍵斷裂。此外,Sc(OTf)3會將錯合物1所配位的氯離子拔除,使三價銅片段裸露並導致二聚體[Cu(TMSPS3)]2 (錯合物6) 的形成。以上結果有助於未來高價銅催化劑的開發。

    A trigonal bipyramidal copper(III) complex, [PPN][Cu(TMSPS3)(Cl)] (complex 1), was synthesized following our previous studies. Basing on the correlation between yields and preparation conditions as well as DFT calculations, we propose a thermodynamically favored copper(II) disproportionation occurs within a TMSPS3–Cu2Cl4 intermediate, producing complex 1 and a copper(I) side-product. UV–vis titrations of complex 1 with various additive ligands, such as N3− (Keq = 18), DABCO (8), pyridine (0.13) and 2,6-lutidine (0.0010), comply 1:1 ligand–chloride exchange in solution, hence clarifying the semi-stability of complex 1 in solution phase. Derivatized [PPN][Cu(TMSPS3)(N3)] (complex 2), [Cu(TMSPS3)(DABCO)] (complex 3) and [PPN][Cu(TMSPS3)(NCS/Cl)] (complex 4/1) were then accordingly synthesized. Cu and S K-edge X-ray absorption spectra of complexes 1–3 reveal the elevated LUMO (3dz2 feathered) in TBP ligand field with their +3 oxidation state of copper and the Cu–thiolate covalency. These indicate the electron density compensation (S→Cu) within Cu(TMSPS3) moiety, which not only stabilizes copper(III) center but also supresses the electrostatic demand for the axial ligand binding. A cyano derivative, [PPN][Cu(TMSPS3)(CN)] (complex 5), was isolated from the reaction of complex 1 with NaOH in CH3CN; and a cyanomethide-bound copper(III) intermediate is evidenced by NMR, UV–vis, and IR spectra, responsible for the C–CN bond cleavage of CH3CN solvent. Additionally, chloride of complex 1 is abstracted by Sc(OTf)3, which exposes the copper(III) moiety and leads the formation of dimeric [Cu(TMSPS3)]2 (complex 6). These results facilitate further development of high-valent copper catalysts.

    第一章 緒論 p.1 1-1 高氧化態過渡金屬之生化概論 p.2 1-1.1 高價鐵生物無機化學 p.2 1-1.2 高價銅生物無機化學 p.8 1-2 高價銅化學概述 p.18 1-3 PS3配位錯合物研究提要 p.27 第二章 實驗方法 p.30 2-1.1 溶劑與試藥 p.30 2-1.2 儀器設備 p.31 2-2 錯合物製備 p.33 2-3 密度泛函理論計算 p.42 2-4 配位基光譜滴定 p.45 2-5 X-ray吸收光譜 p.47 第三章 結果與討論 p.48 3-1 錯合物1生成機制 p.48 3-2 錯合物1之結構特性 p.57 3-3 Cu(TMSPS3)基團之軸位配基置換 p.63 3-4 三價銅錯合物之X-ray吸收光譜 p.74 3-5 Cu(TMSPS3)活化乙腈碳—碳鍵斷裂反應 p.81 3-6 Cu(TMSPS3)片段的二聚化反應 p.93 第四章 結論 p.98 4-1 總結 p.98 4-2 未來展望 p.100 4-2.1 三價銅活性物種之鑑定 p.100 4-2.2 三價銅之催化反應開發 p.103 參考文獻 p.106

    1. David L. Nelson, Michael. M. Cox Lehninger Principles of Biochemistry, 6/ed; W. H. Freeman & Company: New York, 2012; pp 158–172.
    2. John. T. Groves, Robert C. Haushalter, Mikio Nakamura, Thomas E. Nemo, B. J. Evans J. Am. Chem. Soc. 1981, 103, 2884–2886.
    3. James E. Penner-Hahn, Kim Smith Eble, Thomas J. McMurry, Mark Renner, Alan L. Balch, John T. Groves, John H. Dawson, Keith O. Hodgson J. Am. Chem. Soc. 1986, 108, 7819–7825.
    4.(a) Hans-Petter Hersleth, Ulf Ryde, Patrik Rydberg, Carl Henrik Görbitz, K. Kristoffer Andersson J. Inorg. Biochem. 2006, 100, 460–476. (b) Jonathan Rittle, Michael T. Green Science 2003, 299, 1037–1039.
    5. Johannes Hohenberger, Kallol Ray, Karsten Meyer Nat. Commun. 2012, 3, No. 720.
    6. Craig A. Grapperhaus, Bernd Mienert, Eckhard Bill, Thomas Weyhermüller, Karl Wieghardt Inorg. Chem. 2000, 39, 5306–5317.
    7. Jan-Uwe Rohde, Jun-Hee In, Mi Hee Lim, William W. Brennessel, Michael R. Bukowski, Audria Stubna, Eckard Münck, Wonwoo Nam, Lawrence Que Jr. Science 2003, 299, 1037–1039.
    8. Aidan R. McDonald, Lawrence Que Jr. Coord. Chem. Rev. 2013, 257, 414–428.
    9.(a) Jason England, Marlène Martinho, Erik R. Farquhar, Jonathan R. Frisch, Emile L. Bominaar, Eckard Münck, Lawrence Que, Jr. Angew. Chem., Int. Ed. 2009, 48, 3622–3626. (b) Jason England, Yisong Guo, Erik R. Farquhar, Victor G. Young Jr., Eckard Münck, Lawrence Que Jr. J. Am. Chem. Soc. 2010, 132, 8635–8644.
    10. David C. Lacy, Rupal Gupta, Kari L. Stone, John Greaves, Joseph W. Ziller, Michael P. Hendrich, A. S. Borovik J. Am. Chem. Soc. 2010, 132, 12188–12190.
    11.(a) József Kaizer, Eric J. Klinker, Na Young Oh, Jan-Uwe Rohde, Woon Ju Song, Audria Stubna, Jinheung Kim, Eckard Münck, Wonwoo Nam, Lawrence Que, Jr. J. Am. Chem. Soc. 2004, 126, 472–473. (b) Eric J. Klinker, József Kaizer, William W. Brennessel, Nathaniel L. Woodrum, Christopher J. Cramer, Lawrence Que, Jr. Angew. Chem., Int. Ed. 2005, 44, 3690–3694.
    12. Mi Sook Seo, Nam Hee Kim, Kyung-Bin Cho, Jeong Eun So, Seon Kyung Park, Martin Clémancey, Ricardo Garcia-Serres, Jean-Marc Latour, Sason Shaik, Wonwoo Nam Chem. Sci. 2011, 2, 1039–1045.
    13. Genqiang Xue, Raymond De Hont, Eckard Münck, Lawrence Que Jr Nat. Chem. 2010, 257, 400–405.
    14. Debasish Mandal, Rajeev Ramanan, Dandamudi Usharani, Deepa Janardanan, Binju Wang, Sason Shaik J. Am. Chem. Soc. 2015, 137, 722–733.
    15. Sarmistha Chakrabarty, Rachel N. Austin, Dayi Deng, John T. Groves, John D. Lipscomb J. Am. Chem. Soc. 2007, 129, 3514–3515.
    16.(a) Irene Prat, Jennifer S. Mathieson, Mireia Güell, Xavi Ribas, Josep M. Luis, Leroy Cronin, Miquel Costas Nat. Chem. 2011, 3, 788–793. (b) Aidan R. McDonald, Lawrence Que, Jr. Nat. Chem. 2011, 3, 761–762.
    17.(a) Filipe Tiago de Oliveira, Arani Chanda, Deboshri Banerjee, Xiaopeng Shan, Sujit Mondal, Lawrence Que Jr., Emile L. Bominaar, Eckard Münck, Terrence J. Collins Science 2007, 315, 835–838. (b) Soumen Kundu, Jasper Van Kirk Thompson, Longzhu Q. Shen, Matthew R. Mills, Emile L. Bominaar, Alexander D. Ryabov, Terrence J. Collins Chem.—Eur. J. 2015, 21, 1803–1810.
    18. Munmun Ghosh, Kundan K. Singh, Chakadola Panda, Andrew Weitz, Michael P. Hendrich, Terrence J. Collins, Basab B. Dhar, Sayam Sen Gupta J. Am. Chem. Soc. 2014, 136, 9524–9527.
    19. W. Chadwick Ellis, Neal D. McDaniel, Stefan Bernhard, Terrence J. Collins J. Am. Chem. Soc. 2010, 132, 10990–10991.
    20.(a) Chakadola Panda, Joyashish Debgupta, David Dí az Díaz, Kundan K. Singh, Sayam Sen Gupta, Basab B. Dhar J. Am. Chem. Soc. 2014, 136, 12273–12282. (b) Zoel Codolà , Laura Gómez, Scott T. Kleespies, Lawrence Que, Jr., Miquel Costas, Julio Lloret-Fillol Nat. Commun. 2015, 6, No. 5865.
    21. Edward I. Solomon, David E. Heppner, Esther M. Johnston, Jake W. Ginsbach, Jordi Cirera, Munzarin Qayyum, Matthew T. Kieber-Emmons, Christian H. Kjaergaard, Ryan G. Hadt, Li Tian Chem. Rev. 2014, 114, 3659–3853.
    22.(a) Edward I. Solomon, Uma M. Sundaram, Timothy E. Machonkin Chem. Rev. 1996, 96, 2563–2605. (b) Malte Rolff, Julia Schottenheim, Heinz Decker, Felix Tuczek Chem. Soc. Rev. 2011, 40, 4077–4098.
    23. Jason A. Halfen, Samiran Mahapatra, Elizabeth C. Wilkinson, Susan Kaderli, Victor G. Young Jr., Lawrence Que, Jr., Andreas D. Zuberbuhler, William B. Tolman Science 1996, 271, 1397–1400.
    24. Lawrence Que, Jr., William B. Tolman Angew. Chem., Int. Ed. 2002, 41, 1114–1137.
    25. Shinobu Itoh, Shunichi Fukuzumi Acc. Chem. Res. 2007, 40, 592–600.
    26. Liviu M. Mirica, Michael Vance, Deanne Jackson Rudd, Britt Hedman, Keith O. Hodgson, Edward I. Solomon, T. Daniel P. Stack Science 2005, 308, 1890–1892.
    27. Copper-Oxygen Chemistry; Karlin, K. D., Itoh, S., Eds.; John Wiley & Sons: New York, 2011.
    28. Alexander Hoffmann, Sonja Herres-Pawlis Chem. Commun. 2014, 50, 403–405.
    29. Heather R. Lucas, Lei Li, Amy A. Narducci Sarjeant, Michael A. Vance, Edward I. Solomon, Kenneth D. Karlin J. Am. Chem. Soc. 2009, 131, 3230–3245.
    30. Isaac Garcia-Bosch, Anna Company, Jonathan R. Frisch, Miquel Torrent-Sucarrat, Mar Cardellach, Ilaria Gamba, Mireia Gell, Luigi Casella, Lawrence Que, Jr., Xavi Ribas, Josep M. Luis, Miquel Costas Angew. Chem., Int. Ed. 2010, 49, 2406–2409.
    31.(a) Kristian E. Dalle, Tim Gruene, Sebastian Dechert, Serhiy Demeshko, Franc Meyer J. Am. Chem. Soc. 2014, 136, 7428–7434. (b) Nicole Kindermann, Eckhard Bill, Sebastian Dechert, Serhiy Demeshko, Edward J. Reijerse, Franc Meyer Angew. Chem., Int. Ed. 2015, 54, 1738–1743.
    32.(a) Judith P. Klinman J. Biol. Chem. 2006, 281, 3013–3016. (b) Corinna R. Hess, Judith P. Klinman, Ninian J. Blackburn J. Biol. Inorg. Chem. 2010, 15, 1195–1207.
    33. Sean T. Prigge, Betty A. Eipper, Richard E. Mains, L. Mario Amzel Science 2004, 304, 864–867.
    34. Kiyoshi Fujisawa, Masako Tanaka, Yoshihiko Moro-oka, Nobumasa Kitajima J. Am. Chem. Soc. 1994, 116, 12079–12080.
    35. Christian Würtele, Ekaterina Gaoutchenova, Klaus Harms, Max C. Holthausen, Jörg Sundermeyer, Siegfried Schindler Angew. Chem., Int. Ed. 2006, 45, 3867–3869.
    36.(a) Nermeen W. Aboelella, Elizabeth A. Lewis, Anne M. Reynolds, William W. Brennessel, Christopher J. Cramer, William B. Tolman J. Am. Chem. Soc. 2002, 124, 10660–10661. (b) Anne M. Reynolds, Benjamin F. Gherman, Christopher J. Cramer, William B. Tolman Inorg. Chem. 2005, 44, 6989–6997.
    37. Yuki Kobayashi, Kei Ohkubo, Takashi Nomura, Minoru Kubo, Nobutaka Fujieda, Hideki Sugimoto, Shunichi Fukuzumi, Kei Goto, Takashi Ogura, Shinobu Itoh Eur. J. Inorg. Chem. 2012, 4574–4578.
    38. Patrick J. Donoghue, Aalo K. Gupta, David W. Boyce, Christopher J. Cramer, William B. Tolman J. Am. Chem. Soc. 2010, 132, 15869–15871.
    39.(a) Peng Chen, David E. Root, Cecelia Campochiaro, Kiyoshi Fujisawa, Edward I. Solomon J. Am. Chem. Soc. 2003, 125, 466–474. (b) Ritimukta Sarangi, Nermeen Aboelella, Kiyoshi Fujisawa, William B. Tolman, Britt Hedman, Keith O. Hodgson, Edward I. Solomon J. Am. Chem. Soc. 2006, 128, 8286–8296. (c) Julia S. Woertink, Li Tian, Debabrata Maiti, Heather R. Lucas, Richard A. Himes, Kenneth D. Karlin, Frank Neese, Christian Würtele, Max C. Holthausen, Eckhard Bill, Jörg Sundermeyer, Siegfried Schindler, Edward I. Solomon Inorg. Chem. 2010, 49, 9450–9459. (d) Jake W. Ginsbach, Ryan L. Peterson, Ryan E. Cowley, Kenneth D. Karlin, Edward I. Solomon Inorg. Chem. 2013, 52, 12872–12874.
    40. Christopher J. Cramer, William B. Tolman Acc. Chem. Res. 2007, 40, 601–608.
    41. Ryan L. Peterson, Jake W. Ginsbach, Ryan E. Cowley, Munzarin F. Qayyum, Richard A. Himes, Maxime A. Siegler, Cathy D. Moore, Britt Hedman, Keith O. Hodgson, Shunichi Fukuzumi, Edward I. Solomon, Kenneth D. Karlin J. Am. Chem. Soc. 2013, 135, 16454–16467.
    42. Claudio Saracini, Dimitrios G. Liakos, Jhon E. Zapata Rivera, Frank Neese, Gerald J. Meyer, Kenneth D. Karlin J. Am. Chem. Soc. 2014, 136, 1260–1263.
    43. Jung Yoon Lee, Ryan L. Peterson, Kei Ohkubo, Isaac Garcia-Bosch, Richard A. Himes, Julia Woertink, Cathy D. Moore, Edward I. Solomon, Shunichi Fukuzumi, Kenneth D. Karlin J. Am. Chem. Soc. 2014, 136, 9925–9936.
    44. Sunghee Kim, Jung Yoon Lee, Ryan E. Cowley, Jake W. Ginsbach, Maxime A. Siegler, Edward I. Solomon, Kenneth D. Karlin J. Am. Chem. Soc. 2015, 137, 2796–2799.
    45. Paolo Pirovano, Adriana M. Magherusan, Ciara McGlynn, Andrew Ure, Amy Lynes, Aidan R. McDonald Angew. Chem., Int. Ed. 2014, 53, 5946–5950.
    46.(a) Peng Chen, Edward I. Solomon J. Am. Chem. Soc. 2004, 126, 4992–5000. (b) Peng Chen, Edward I. Solomon Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 13105–13110.
    47. Andrew T. Bauman, Erik T. Yukl, Katsiaryna Alkevich, Ashley L. McCormack, Ninian J. Blackburn J. Biol. Chem. 2006, 281, 4190–4198.
    48. Alejandro Crespo, Marcelo A. Martí, Adrian E. Roitberg, L. Mario Amzel, Darío A. Estrin J. Am. Chem. Soc. 2006, 128, 12817–12828.
    49. Kazunari Yoshizawa, Naoki Kihara, Takashi Kamachi, Yoshihito Shiota Inorg. Chem. 2006, 45, 3034–3041.
    50. Neil R. McIntyre, Edward W. Lowe, Jr., David J. Merkler J. Am. Chem. Soc. 2009, 131, 10308–10319.
    51. Christopher J. Shaffer, Detlef Schröder, Christoph Gütz, Arne Lutzen Angew. Chem., Int. Ed. 2012, 51, 8097–8100.
    52. Ana Conde, Laia Vilella, David Balcells, M. Mar Díaz-Requejo, Agustí Lledós, Pedro J. Pérez J. Am. Chem. Soc. 2013, 135, 3887–3896.
    53. Patrick J. Donoghue, Jacqui Tehranchi, Christopher J. Cramer, Ritimukta Sarangi, Edward I. Solomon, William B. Tolman J. Am. Chem. Soc. 2011, 133, 17602–17605.
    54. Alison E. Wendlandt, Alison M. Suess, Shannon S. Stahl Angew. Chem., Int. Ed. 2011, 50, 11062–11087.
    55. Scott E. Allen, Ryan R. Walvoord, Rosaura Padilla-Salinas, Marisa C. Kozlowski Chem. Rev. 2013, 113, 6234–6458.
    56.(a) Jessica M. Hoover, Shannon S. Stahl J. Am. Chem. Soc. 2011, 133, 16901–16910. (b) Bradford L. Ryland, Scott D. McCann, Thomas C. Brunold, Shannon S. Stahl J. Am. Chem. Soc. 2014, 136, 12166–12173. (c) Xiaomin Xie, Shannon S. Stahl J. Am. Chem. Soc. 2015, 137, 3767–3770.
    57. Jwanro Hassan, Marc Sévignon, Christel Gozzi, Emmanuelle Schulz, Marc Lemaire Chem. Rev. 2002, 102, 1359–1469.
    58. Irina P. Beletskaya, Andrei V. Cheprakov Coord. Chem. Rev. 2004, 248, 2337–2364.
    59. Carlo Sambiagio, Stephen P. Marsden, A. John Blacker, Patrick C. McGowan Chem. Soc. Rev. 2014, 43, 3525–3550.
    60. Naohiko Yoshikai, Eiichi Nakamura Chem. Rev. 2002, 102, 2339–2372.
    61. Robert P. Davies Coord. Chem. Rev. 2011, 255, 1226–1251.
    62. Gerard van Koten Organometallics 2012, 31, 7634–7646.
    63. T. Cohen, J. Wood, A. G. Dietz, Jr. Tetrahedron Lett. 1974, 15, 3555–3558.
    64.(a) D. C. Olson, J. Vasilevskis Inorg. Chem. 1971, 10, 463–470. (b) J. J. Bour, P. J. M. W. L. Birker, J. J. Steggerda Inorg. Chem. 1971, 10, 1202–1205. (c) Frank P. Bossu, K. L. Chellappa, Dale W. Margerum J. Am. Chem. Soc. 1975, 99, 2195–2203.
    65. Alicia Casitas, Xavi Ribas; Insights into the Mechanism of Modern Ullmann–Goldberg Coupling Reactions. In Copper-Mediated Cross-Coupling Reactions; Gwilherm Evano, Nicolas Blanchard Eds.; John Wiley & Sons: New Jersey, 2014; pp 263–279.
    66. Amanda J. Hickman1, Melanie S. Sanford Nature 2012, 484, 177–185.
    67. Alicia Casitas, Xavi Ribas Chem. Sci. 2013, 4, 2301–2318.
    68. Kenneth J. Oliver, T. Neil Waters J. Chem. Soc., Chem. Commun. 1982, 1111–1112.
    69. Fred C. Anson, Terrence J. Collins, Thomas G. Richmond, Bernard D. Santarsiero, James E. Toth, Brian G. R. T. Treco J. Am. Chem. Soc. 1987, 109, 2974–2919.
    70. Jan Hanss, Hans-Jörg Krüger Angew. Chem., Int. Ed. Engl. 1996, 35, 2827–2830.
    71. Monika A. Willert-Porada, Donald J. Burton, Norman C. Baenziger J. Chem. Soc., Chem. Commun. 1989, 1633–1634.
    72. Dieter Naumann, Thomas Roy, Karl-Friedrich Tebbe, Wolfgang Crump Angew. Chem., Int Ed. Engl. 1993, 32, 1482–1483.
    73. R. Eujen, B. Hoge, D. J. Brauer J. Organomet. Chem. 1996, 519, 7–20.
    74. Igor O. Fritsky, Henryk Kozłowski, Olga M. Kanderal, Matti Haukka, Jolanta Świᶏtek-Kozłowska Elzbieta Gumienna-Konteckab, Franc Meyer Chem. Commun. 2006, 4125–4127.
    75. Stefan Will, Johann Lex, Emanuel Vogel, Hans Schmickler, Jean-Paul Gisselbrecht, Catherine Haubtmann, Maxime Bernard, Maurice Gross Angew. Chem., Int. Ed. Engl. 1997, 36, 357–361.
    76.(a) Hiroyuki Furuta, Hiromitsu Maeda, Atsuhiro Osuka J. Am. Chem. Soc. 2000, 122, 803–807. (b) Hiromitsu Maeda, Yuichi Ishikawa, Tomoyuki Matsuda, Atsuhiro Osuka, Hiroyuki Furuta J. Am. Chem. Soc. 2003, 125, 11822–11823. (c) Hiromitsu Maeda, Atsuhiro Osuka, Hiroyuki Furuta J. Am. Chem. Soc. 2003, 125, 15690–15691.
    77.(a) Dimitri Coucouvanis; The Chemistry of the Dithioacid and 1,1-Dithiolate Complexes, 1968–1977. In Progress in Inorganic Chemistry, Vol. 26; Stephen J. Lippard Ed.; John Wiley & Sons: New York, 1979; pp 324–330. (b) Mercouri. G. Kanatzidis, Norman C. Baenziger, Dimitri Coucouvanis Inorg. Chem. 1985, 24, 2680–2683.
    78. José Vicente, Pablo González-Herrero, Yolanda García-Sánchez, Peter G. Jones, Delia Bautista Eur. J. Inorg. Chem. 2006, 115–126.
    79. Xavi Ribas, Deanne A. Jackson, Bruno Donnadieu, José Mahía, Teodor Parella, Raül Xifra, Britt Hedman, Keith O. Hodgson, Antoni Llobet, T. Daniel P. Stack Angew. Chem., Int. Ed. 2002, 41, 2991–2994.
    80. Lauren M. Huffman, Alicia Casitas, Marc Font, Mercè Canta, Miquel Costas, Xavi Ribas, Shannon S. Stahl Chem.—Eur. J. 2011, 17, 10643–10650.
    81.(a) Alicia Casitas, Amanda E. King, Teodor Parella, Miquel Costas, Shannon S. Stahl, Xavi Ribas Chem. Sci. 2010, 1, 326–330. (b) Amanda E. King, Lauren M. Huffman, Alicia Casitas, Miquel Costas, Xavi Ribas, Shannon S. Stahl J. Am. Chem. Soc. 2010, 132, 12068–12073. (c) Xavi Ribas, Carlos Calle, Albert Poater, Alicia Casitas, Laura Gómez, Raül Xifra, Teodor Parella, Jordi Benet-Buchholz, Arthur Schweiger, George Mitrikas, Miquel Solà, Antoni Llobet, T. Daniel P. Stack J. Am. Chem. Soc. 2010, 132, 12299–12306.
    82.(a) Alicia Casitas, Mercè Canta, Miquel Solà, Miquel Costas, Xavi Ribas J. Am. Chem. Soc. 2011, 133, 19386–19392. (b) Mireia Rovira, Marc Font, Ferran Acuña-Parés, Teodor Parella, Josep M. Luis, Julio Lloret-Fillol, Xavi Ribas Chem.—Eur. J. 2014, 20, 10005–10010.
    83.(a) Bo Yao, De-Xian Wang, Zhi-Tang Huang, Mei-Xiang Wang Chem. Commun. 2009, 2899–2901. (b) Hu Zhang, Liang Zhao, De-Xian Wang, Mei-Xiang Wang Org. Lett. 2013, 15, 3836–3839. (c) Hu Zhang, Bo Yao, Liang Zhao, De-Xian Wang, Bo-Qing Xu, Mei-Xiang Wang J. Am. Chem. Soc. 2014, 136, 6326–6332.
    84. Ruth M. Gschwind Chem. Rev. 2008, 108, 3029–3053.
    85.(a) Steven H. Bertz, Stephen Cope, Michael Murphy, Craig A. Ogle, Brad J. Taylor J. Am. Chem. Soc. 2007, 129, 7208–7209. (b) Steven H. Bertz, Stephen Cope, Donna Dorton, Michael Murphy, Craig A. Ogle Angew. Chem., Int. Ed. 2007, 46, 7082–7085. (c) Erika R. Bartholomew, Steven H. Bertz, Stephen Cope, Donna C. Dorton, Michael Murphya, Craig A. Ogle Chem. Commun. 2008, 1176–1177. (d) Steven H. Bertz, Michael D. Murphy, Craig A. Ogle, Andy A. Thomas Chem. Commun. 2010, 46, 1255–1256.
    86. Irina P. Beletskaya, Andrei V. Cheprakov Organometallics 2012, 31, 7753–7808.
    87. Robert J. Phipps, Matthew J. Gaunt Science 2009, 323, 1593–1597.
    88. Andrew M. Romine, Noel Nebra, Andrey I. Konovalov, Eddy Martin, Jordi Benet-Buchholz, Vladimir V. Grushin Angew. Chem., Int. Ed. 2015, 54, 2745–2749.
    89. Ryoko Santo, Riichi Miyamoto, Rika Tanaka, Takanori Nishioka, Kazunobu Sato, Kazuo Toyota, Makoto Obata, Shigenobu Yano, Isamu Kinoshita, Akio Ichimura, Takeji Takui Angew. Chem., Int. Ed. 2006, 45, 7611–7614.
    90. John D. Franolic, Michelle Millar, Stephen A. Koch Inorg. Chem. 1995, 34, 1981–1982.
    91. Jeanet Conradie, Duncan A. Quarless, Jr., Hua-Fen Hsu, Todd C. Harrop, Stephen J. Lippard, Stephen A. Koch, Abhik Ghosh J. Am. Chem. Soc. 2007, 129, 10446–10456.
    92. Ya-Ho Chang, Pooi-Mun Chan, Yi-Fang Tsai, Gene-Hsiang Lee, Hua-Fen Hsu Inorg. Chem. 2014, 53, 664–666.
    93.(a) Chien-Ming Lee, Chien-Hong Chen, Shyue-Chu Ke, Gene-Hsiang Lee, Wen-Feng Liaw J. Am. Chem. Soc. 2004, 126, 8406–8412. (b) Chien-Hong Chen, Gene-Hsiang Lee, Wen-Feng Liaw Inorg. Chem. 2006, 45, 2307–2316. (c) Chien-Ming Lee, Ya-Lan Chuang, Chao-Yi Chiang, Gene-Hsiang Lee, Wen-Feng Liaw Inorg. Chem. 2006, 45, 10895–10904. (d) Chien-Ming Lee, Tzung-Wen Chiou, Hsin-Hung Chen, Chao-Yi Chiang, Ting-Shen Kuo, Wen-Feng Liaw Inorg. Chem. 2007, 46, 8913–8923. (e) Tzung-Wen Chiou, Wen-Feng Liaw Inorg. Chem. 2008, 47, 7908–7913. (f) Chien-Ming Lee, Chien-Hong Chen, Fu-Xing Liao, Ching-Han Hu, Gene-Hsiang Lee J. Am. Chem. Soc. 2010, 132, 9256–9258. (g) Kuan-Ting Lai, Wei-Chieh Ho, Tzung-Wen Chiou, Wen-Feng Liaw Inorg. Chem. 2013, 52, 4151–4153.
    94.(a) Wei-Cheng Chu, Chi-Chin Wu, Hua-Fen Hsu Inorg. Chem. 2006, 45, 3164–3166. (b) Hua-Fen Hsu, Chia-Ling Su, Neeruganti O. Gopal, Chi-Chin Wu, Wei-Cheng Chu, Yi-Fang Tsai, Ya-Ho Chang, Yi-Hung Liu, Ting-Shen Kuo, Shyue-Chu Ke Eur. J. Inorg. Chem. 2006, 1161–1167. (c) Shengfa Ye, Frank Neese, Andrew Ozarowski, Dmitry Smirnov, J. Krzystek, Joshua Telser, Ju-Hsiou Liao, Chen-Hsiung Hung, Wei-Chen Chu, Yi-Feng Tsai, Rong-Chin Wang, Kun-Yuan Chen, Hua-Fen Hsu Inorg. Chem. 2010, 49, 977–988. (d) Ya-Ho Chang, Chia-Ling Su, Ru-Rong Wu, Ju-Hsiou Liao, Yi-Hung Liu, Hua-Fen Hsu J. Am. Chem. Soc. 2011, 133, 5708–5711.
    95. Chien-Ming Lee, Chi-He Chuo, Ching-Hui Chen, Cho-Chun Hu, Ming-Hsi Chiang, YuJan Tseng, Ching-Han Hu, Gene-Hsiang Lee Angew. Chem., Int. Ed. 2012, 51, 5427–5430.
    96. Jodi D. Niemoth-Anderson, Kerry A. Fusie Clark, T. Adrian George, Charles R. Ross, II J. Am. Chem. Soc. 2000, 122, 3977–3978.
    97. 蔡佩真 (2012)。含三甲基矽基之磷硫三腳四牙基的二價鐵錯合物合成及其性質與光譜探討。國立臺灣師範大學,臺北市。
    98. 林宗翰 (2011)。具三甲基矽基之磷硫多牙基的新穎三價銅錯合物合成及性質探討。國立臺灣師範大學,臺北市。
    99. 劉玟季 (2015)。含磷硫四牙基雙三角錐三價銅錯合物之生成研究。國立臺灣師範大學,臺北市。
    100. Eric Block, Gabriel Ofori-Okai, Jon Zubieta J. Am. Chem. Soc.1989, 111, 2327–2329.
    101.(a) Marcus Textor, Erich Dubler, Hans Rudolf Oswald Inorg. Chem. 1974, 13, 1361–1365. (b) Hasselgren, C.; Jagner, S.; Dance, I. Chem.—Eur. J. 2002, 8, 1270–1278.
    102. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
    103.(a) Axel D. Becke Phys. Rev. A 1988, 38, 3098–3100. (b) Axel D. Becke J. Chem. Phys. 1993, 98, 5648–5652. (c) Chengteh Lee, Weitao Yang, Robert G. Parr Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785–789.
    104. Yan Zhao, Donald G. Truhlar J. Chem. Phys. 2006, 125, 194101.
    105.(a) P. Jeffrey Hay, Willard R. Wadt J. Chem. Phys. 1985, 82, 270–283. (b) P. Jeffrey Hay, Willard R. Wadt J. Chem. Phys. 1985, 82, 284–298. (c) P. Jeffrey Hay, Willard R. Wadt J. Chem. Phys. 1985, 82, 299–310. (d) Lindsay E. Roy, P. Jeffrey Hay, Richard L. Martin J. Chem. Theory Comput. 2008, 4, 1029–1031.
    106. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
    107. Martin P. Andersson, Per Uvdal J. Phys. Chem. A 2005, 109, 2937–2941.
    108. Chemissian website: http://www.chemissian.com/.
    109. J. A. Bearden, A. F. Burr, Rev. Mod. Phys. 1967, 39, 125–142.
    110. Demeter is available online: http://bruceravel.github.io/demeter/.
    111. Alessandro Bencini, Dante Gatteschi J. Am. Chem. Soc. 1986, 108, 5763–5771.
    112. Sylvie R. Desjardins, Dean E. Wilcox, Ronald L. Musselman, Edward I. Solomon Inorg. Chem. 1987, 26, 288–300.
    113.(a) Josefa Miralles, Jean-Pierre Daudey, Rosa Caballol Chem. Phys. Lett. 1992, 198, 555–562. (b) Oscar Castell, Josefa Miralles, Rosa Caballol Chem. Phys. 1994, 179, 377–384.
    114. Hocking, R. K.; Solomon, E. I. Ligand Field and Molecular Orbital Theories of Transition Metal X-ray Absorption Edge Transitions. In Molecular Electronic Structures of Transition Metal Complexes I; Mingos, D. M. P., Day, P., Dahl, J. P., Eds.; Springer-Verlag: Berlin, 2011; pp 155–184.
    115. Ritimukta Sarangi Coord. Chem. Rev. 2013, 257, 459–472.
    116. Jennifer L. DuBois, Pulakesh Mukherjee, T. D. P. Stack, Britt Hedman, Edward I. Solomon, Keith O. Hodgson J. Am. Chem. Soc. 2000, 122, 5775–5787.
    117.(a) Ritimukta Sarangi, Serena DeBeer George, Deanne Jackson Rudd, Robert K. Szilagyi, Xavi Ribas, Concepció Rovira, Manuel Almeida, Keith O. Hodgson, Britt Hedman, Edward I. Solomon J. Am. Chem. Soc. 2007, 129, 2316–2326. (b) Ritimukta Sarangi, Lei Yang, Stuart G. Winikoff, Laura Gagliardi, Christopher J. Cramer, William B. Tolman, Edward I. Solomon J. Am. Chem. Soc. 2011, 133, 17180–17191.
    118.(a) Lung-Shan Kau, Darlene J. Spira-Solomon, James E. Penner-Hahn, Keith 0. Hodgson, Edward I. Solomon J. Am. Chem. Soc. 1987, 109, 6433–6442. (b) Jennifer L. DuBois, Pulakesh Mukherjee, Andrea M. Collier, James M. Mayer, Edward I. Solomon, Britt Hedman, T. D. P. Stack, Keith O. Hodgson J. Am. Chem. Soc. 1997, 119, 8578–8579.
    119. Andrew M. Thomas, Bo-Lin Lin, Erik C. Wasinger, T. Daniel P. Stack J. Am. Chem. Soc. 2013, 135, 18912–18918.
    120. Debanjan Dhar, William B. Tolman J. Am. Chem. Soc. 2015, 137, 1322–1329.
    121. Nicole Gagnon, William B. Tolman Acc. Chem. Res. 2015, 48, 2126–2131.
    122.(a) Jacqui Tehranchi, Patrick J. Donoghue, Christopher J. Cramer, William B. Tolman Eur. J. Inorg. Chem. 2013, 4077–4084. (b) Debanjan Dhar, Gereon M. Yee, Andrew D. Spaeth, David W. Boyce, Hongtu Zhang, Büsra Dereli, Christopher J. Cramer, William B. Tolman J. Am. Chem. Soc. 2016, 138, ASAP.
    123.(a) Shunichi Fukuzumi, Yuma Morimoto, Hiroaki Kotani, Panče Naumov, Yong-Min Lee, Wonwoo Nam Nat. Chem. 2010, 2, 756–759. (b) Yusuke Nishida, Yong-Min Lee, Wonwoo Nam, Shunichi Fukuzumi J. Am. Chem. Soc. 2014, 136, 8042–8049.
    124. Feifei Li, Katherine M. Van Heuvelen, Katlyn K. Meier, Eckard Münck, Lawrence Que, Jr. J. Am. Chem. Soc. 2013, 135, 10198–10201.
    125. Suhee Bang, Yong-Min Lee, Seungwoo Hong, Kyung-Bin Cho, Yusuke Nishida, Mi Sook Seo, Ritimukta Sarangi, Shunichi Fukuzumi, Wonwoo Nam Nat. Chem. 2014, 6, 934–940.
    126. Yuma Morimoto, Jiyun Park, Tomoyoshi Suenobu, Yong-Min Lee, Wonwoo Nam, Shunichi Fukuzumi Inorg. Chem. 2012, 51, 10025–10036.
    127.(a) Junying Chen, Yong-Min Lee, Katherine M. Davis, Xiujuan Wu, Mi Sook Seo, Kyung-Bin Cho, Heejung Yoon, Young Jun Park, Shunichi Fukuzumi, Yulia N. Pushkar, Wonwoo Nam J. Am. Chem. Soc. 2013, 135, 6388–6391. (b) Heejung Yoon, Yong-Min Lee, Xiujuan Wu, Kyung-Bin Cho, Ritimukta Sarangi, Wonwoo Nam, Shunichi Fuhkuzumi J. Am. Chem. Soc. 2013, 135, 9186–9194.
    128. 本實驗室張雅帆同學尚未發表結果。
    129. Hao-Ching Chang, Feng-Chun Lo, Wen-Chi Liu, Tsung-Han Lin, Wen-Feng Liaw, Ting-Shen Kuo, Way-Zen Lee Inorg. Chem. 2015, 54, 5527–5533.
    130. David S. Laitar, Peter Müller, Joseph P. Sadighi J. Am. Chem. Soc. 2005, 127, 17196–17197.
    131. Christian Kleeberg, Li Dang, Zhenyang Lin, Todd B. Marder Angew. Chem., Int. Ed. 2009, 48, 5350–5354.
    132.(a) Takeshi Ohishi, Masayoshi Nishiura, Zhaomin Hou Angew. Chem., Int. Ed. 2008, 47, 5792–5795. (b) Takeshi Ohishi, Liang Zhang, Masayoshi Nishiura, and Zhaomin Hou Angew. Chem., Int. Ed. 2011, 50, 8114–8117.
    133.(a) Kazuhiko Semba, Masataka Shinomiya, Tetsuaki Fujihara, Jun Terao, Yasushi Tsuji Chem.—Eur. J. 2013, 19, 7125–7132. (b) Kazuhiko Semba, Naoto Bessho, Tetsuaki Fujihara, Jun Terao, Yasushi Tsuji Angew. Chem., Int. Ed. 2014, 53, 9007–9011.
    134. Tetsuaki Fujihara, Kazuhiko Semba, Jun Terao, Yasushi Tsuji Catal. Sci. Technol. 2014, 4, 1699–1709.
    135.(a) Xuezhen Kou, Mengdi Zhao, Xixue Qiao, Yamin Zhu, Xiaofeng Tong, Zengming Shen Chem.—Eur. J. 2013, 19, 16880–16886; (b) Yamin Zhu, Mengdi Zhao, Wenkui Lu, Linyi Li, Zengming Shen Org. Lett. 2015, 17, 2602–2605; (c) Yamin Zhu, Linyi Li, Zengming Shen Chem.—Eur. J. 2015, 21, 13246–13252.

    下載圖示
    QR CODE