簡易檢索 / 詳目顯示

研究生: 吳俊緯
Jim-Wei, Wu
論文名稱: 電弧放電應用於陽極接合速度與品質之研究
Research on speed and quality of anodic bonding by applying arc discharge
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 109
中文關鍵詞: 陽極接合技術特殊電極陣列電弧放電放電間隙
英文關鍵詞: anodic bonding technology, arrangement of special electrode, arc discharge, discharge gap
論文種類: 學術論文
相關次數: 點閱:213下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 陽極接合技術常被應用於微機電元件的組裝,是目前微機電製程中相當倚重的一種接合技術。主要藉由離子鍵結的方式來達到接合的目的;故兩接合表面平整度要求非常高,屬於無介質的接合方式。而接合過程中電極的幾何形狀可造成不同的接合效果,原因是當通入直流電壓時,首先發生接合現象是在上電極與玻璃接觸的下方。若選用大面積的上電極;使電極完全的與玻璃晶片接觸,平均電場的分佈可使電極下方同時發生接合。因而可改善接合的速度,但接合的品質並沒有單點電極來的好,原因在大面積的電極在接合時,會在介面上產生氣孔。對於單點式電極,其接合區域是慢慢擴張出去,因此接合面的殘存氣體也會被驅趕出去,不易形成氣泡,接合品質相當好,但接合速度相當緩慢。
    本研究提出一種新式的電弧放電接合方式,並搭配特殊電極幾何形狀的排列方式,來改善陽極接合的速度及氣泡問題。實驗結果證實,利用輻射狀線電極在定電壓900 V、溫度400 ℃及放電間隙120 um條件下,進行4吋晶片接合時,接合時間約為17秒,且接合良率可至99.98 %左右。

    Anodic bonding techniques are often used in MEMS components assembly, which is the micro-electromechanical system is heavily dependent on the process of a mount technology. Mainly through the ionic bond to attain the purpose of bonding; Both bonding surface roughness is high Media is no way of bonding. And the bonding process of electrode geometry can cause different interface effects, because when passed through DC voltage, First bonding phenomena occur on the electrode is in contact with the bottom of the glass. If the choice of a large area on the electrode; Planer electrode full contact with the glass chips, The average distribution of the electric field can simultaneously bottom electrode interface. It can improve the interface speed, but the quality of engagement and no single point electrodes to the good, reason for the large area of the electrode interface, the interface will have a stoma. For single-electrode, its interface region is slowly expanding out, the residual gas washer will be evicted Bubble formation is not easy, the interface quality is very good, but the bonding speed has been rather slow.
    This study proposes a new type of interface arc discharge method, and a special mix of electrode geometry of the arrangement. anodic bonding to improve the speed and bubble problem. The experimental results confirmed that the use of radial line in determining electrode voltage 900 V, temperature of 400 ° C and discharge gap 120 um conditions, Bonding time of four-inch chip is about 17 seconds, and Bonding ratio to be about 99.98 %.

    摘要 Ⅰ 總目錄 Ⅲ 圖目錄 VI 表目錄 XI 第一章 緒論 1 1.1 微機電系統與接合技術 1 1.2 研究動機與目的 5 第二章 文獻回顧與理論探討 6 2.1 放電概述 6 2.1.1. 放電原理說明 6 2.1.2. 依氣體放電方式分類 7 2.1.3. 電弧的形成 8 2.1.3. 電弧的特性 9 2.2 陽極接合技術 13 2.2.1. 接合原理說明 13 2.2.1. 接合電流說明 14 2.3 陽極接合對準技術 18 2.3.1. 玻璃與矽晶片對準技術 18 2.3.2. 矽晶片與矽晶片對準技術 18 2.4 陽極接合強度測試方法 21 2.4.1. 撞擊試驗 21 2.4.2. 拉伸試驗 21 2.4.3. 表面能試驗 21 2.5 陽極接合的應用 24 2.5.1. 微流道系統 24 2.5.2. 加速度計 24 2.5.3. 壓力感測器 25 2.5.4. 陀螺儀 25 2.6 電極的設計 29 2.6.1. 輻射狀電極 29 2.6.2. 螺旋狀電極 29 第三章 電極設計製作與實驗程序規劃 33 3.1 電極設計與製作 33 3.1.1. 輻射狀點電極 33 3.1.2. 輻射狀線電極 34 3.1.3. 阿基米德渦線狀點電極 34 3.1.4. 阿基米德渦線狀線電極 35 3.2 影像二值化分析 45 3.2.1. 程式操作說明 45 3.2.2. 程式驗證 45 3.3 步進馬達 49 第四章 實驗規劃與設備 51 4.1 實驗規劃 51 4.2 實驗設備與檢測 54 4.3 接合試片準備 64 第五章 實驗結果與討論 66 5.1 定電壓供電接合 66 5.1.1. 試片前處理比較 66 5.1.2. 電弧放電間隙 68 5.1.3. 電弧放電間隙的比較 68 5.1.4. 放電電壓對放電間隙的影響 69 5.2 脈衝電壓供電接合 78 5.2.1. 調變電壓週期 78 5.2.2. 調變電壓頻寬 79 5.3 不同電極之比較 83 5.3.1. 電極接觸接合 83 5.3.2. 電極放電接合 84 5.3.3. 電極接觸與放電之電流探討 84 5.3.4. 探討電極接觸與放電之試片表面完整性 86 5.3.5. 電極放電接合強度 87 5.3.6. 探討輻射狀線電極開口角度對放電接合的影響 87 第六章 結論與未來展望 100 6.1 結論 100 6.2 未來展望 101 參考文獻 102 附錄A 105

    1. 楊啟榮等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章,
    pp. 142 (2003).
    2. V. Dragoi, M. Alexe, M. Reiche, and U. M. Gösele, ECS Meeting Abtracts, MA 99-2, 972 (1999).
    3. 楊啟榮等人, "微機電系統技術與應用", 精密儀器發展中心, 第十章,
    pp. 791 (2003).
    4. F. Secco d’Aragona, T. Iwamoto, H.-D. C. Chiou, and A. Mizza, ECS Meeting Abtracts, MA 97-2, 2052 (1997).
    5. G. Wallis and D. I. Pomerantz, J. Appl. Phys., 40, 3946 (1969).
    6. G. Klink and B. Hillerich, SPIE Conf. On Micromachined Devices and Components, Santa Clara, CA SPIE 3512, pp.50-61 (1998).
    7. 彭子杰, "放電加工機開放架構式電腦數值控制研究", 大葉大學機電自動化研究所, 碩士論文, pp. 6-10 (2005).
    8. 陳兆桐, "智慧型放電波形偵測與放電加工控制研究", 大葉大學機電自動化研究所, 碩士論文, pp. 6-9 (2006).
    9. 賴耿陽, "IC製程之濺射技術", 復漢出版社, pp. 6-10 (1997).
    10. D. S. Rickerby and A. Matthews, “Advanced Surface Coatings: a Handbook of Surface Engineering”, Blackie & Son Limited, Bishopbriggs, London, (1991).
    11. Vossen, John .L. and Kern, Werner, “Thin film processes II”, Academic Press, (1991).
    12. 陳凱林, "半導體濺鍍靶材製程技術與薄膜特性", 工業雜誌, 第19期(2003).
    13. 周長彬 等人, "銲接學", 全華科技圖書股份有限公司, 第二章, pp. 1-5 (2005).
    14. S. Shoji, H. Kikuchi and H. Torigoe, “Low-temperature anodic bonding using lithium aluminosilicate-β-quartz glass ceramic”, Sensors and Actuators, A64, 95-100 (1998).
    15. Y. Kana . K. Mazunori, C. Muradnm, and J. Sugaya, Sensors and Actuators, A21-23, 939 (1990).
    16. M. Despont, H. Gross, F. Arrouy, C. Stebler and U. Staufer, “Fabrication of a silicon-Pyrex-silicon stack by a.c. anodic bonding”, Sensors and Actuators, A55, pp.219-224 (1996).
    17. K. B. Albaugh, “Rate processer during anodic bonding”, J. Am. Ceram. Soc, V75, pp.2644 (1992).
    18. M. A. Morsy, K. Ikenchi, M. Ushio and H. Abe, “Mechanism of enlargement of intimately contacted area in anodic bonding of kovar alloy to borosilicate glass”, Material Transaction JIM, V37, pp.1511 (1996).
    19. T. R. Anthony, “Anodic bonding of imperfect surfaces, J. Appl. Phys., 54, pp.2419-2428 (1983).
    20. 邱國麟, "射頻磁控濺鍍金屬膜於矽晶片與Pyrex 7740玻璃陽極接合之研究", 彰化師範大學機電工程學系, 碩士論文, pp. 10-15 (2004).
    21. K. B. Albaugh and P. E. Cade, “Mechanisms of anodic bonding of silicon to Pyrex glass”, IEEE, 88, pp.109-110 (1988)
    22. 楊啟榮, "微機電系統原理與應用", 國立臺灣師範大學課程講義, (2005).
    23. M. A. Schmidt, “Wafer-to-wafer bonding for microstructure formation”, IEEE, pp.1575-1585 (1998)
    24. J. Wei, H. Xie, M. L. Nai, C. K. Wong and L. C. Lee, “Low temperature wafer anodic bonding”, J. Micromech. and Microeng., pp.217-222 (2003).
    25. Q. Y. Tong and U. Gosele “Semiconductor wafer bonding science and technology”, John Wiley & Sons INC. USA (1999).
    26. B. Puers and D. Lapadatu, “Extremely miniaturized capacitive movement sensors using new suspension systems ”, Sensors and Actuators, A41-A42 129-35 (1994).
    27. A. Cozma and B. Puers, “Characterization of the electrostatic bonding of silicon and Pyrex glass”, J. Micromech. and Microeng., pp.98-102 (1995)
    28. B. Puers, E. Peeters, A. Van Der Bossche and W. Sansen ,, “A capacitive pressure sensor with low impedance output and active suppression of parasitic effect”, Sensors and Actuators, A21-A23 108-14 (1990).

    29. M. C. Lee, S. J. Kang, K. D. Jung, S. H. Choa Y. C. Cho, “A high yield rate MEMS gyroscope with a packaged SiOG process”, J. Micromech. and Microeng., pp.2003-2010 (2005)
    30. T. Michael “Anordnung von elektroden zum anodischen bonden” DE 4423164A1 (1996).
    31. H. Michael “Electrode zum anodischen bonden” DE 4426299A1 (1996).
    32. J. T. Huang, H. A. Yang “Improvement of bonding time and quality of anodic bonding using the spiral arrangement of multiple point electrodes”, Sensors and Actuators, pp.1-5 (2002).
    33. 楊學安, "快速與局部加熱於陽極接合品質的研究應用", 台北科技大學製造科技研究所, 碩士論文, pp. 12-13 (2002).
    34. 王輔春 等人, "工程圖學", 師友工業圖書公司, 第三章, pp.52 (1991).
    35. M. H. Lee, I. M. Hsing “An improved anodic bonding process using pulsed voltage technique”, Journal of Microelectromechanical System, pp.469-473 (2000).

    無法下載圖示 本全文未授權公開
    QR CODE