簡易檢索 / 詳目顯示

研究生: 翁茂東
論文名稱: 超穎材料之光子晶體電磁特性研究
指導教授: 吳謙讓
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 47
中文關鍵詞: 光子晶體左手材料
論文種類: 學術論文
相關次數: 點閱:260下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract

    Photonic crystals (PCs) are periodic structures made of materials with different refractive indices. With their special electromagnetic properties, researches on PCs continue to be hot in recent years. In this thesis, we study the electromagnetic and optical properties of PCs by using the Abeles theory.
    The thesis consists of six chapters. The first chapter is to give a brief review of PCs and Left Handed Materials (LHMs). The second introduce the Abeles theory which will be used for our calculation. Some topics under study are given in chapter 3, 4 and 5, respectively. The conclusion is then summarized in chapter 6.
    In chapter 3, we analyze the reflectance and transmittance in a layered structure containing DPS and DNG media, and we found that the losses play an important role about it. In chapter 4, we show our some novel structures of chirped DBR, which can enhance reflection bandwidth in different ways. In chapter 5 we have constructed a multilayered spatial filter with an ultralow permittivity material and a typical dielectric, it has matched impedance.

    Abstract

    Photonic crystals (PCs) are periodic structures made of materials with different refractive indices. With their special electromagnetic properties, researches on PCs continue to be hot in recent years. In this thesis, we study the electromagnetic and optical properties of PCs by using the Abeles theory.
    The thesis consists of six chapters. The first chapter is to give a brief review of PCs and Left Handed Materials (LHMs). The second introduce the Abeles theory which will be used for our calculation. Some topics under study are given in chapter 3, 4 and 5, respectively. The conclusion is then summarized in chapter 6.
    In chapter 3, we analyze the reflectance and transmittance in a layered structure containing DPS and DNG media, and we found that the losses play an important role about it. In chapter 4, we show our some novel structures of chirped DBR, which can enhance reflection bandwidth in different ways. In chapter 5 we have constructed a multilayered spatial filter with an ultralow permittivity material and a typical dielectric, it has matched impedance.

    Contents Abstract………………………………………………………….i Acknowledgement……………………………………………...ii Contents………………………………………………………..iii Chapter 1 Introduction………………………………………1 1-1 History Background…………………………………………1 1-2 Motivation…………………………………………………...3 1-3 Overview…………………………………………………….4 Chapter 2 Theoretical Methods……………………………..5 2-1 Characteristic Matrix ………………………………………5 2-2 A Homogeneous Dielectric Film…………………………...9 2-3 A Stratified Medium as a Pile of Thin Homogeneous Dielectric Films…………………………………………..11 2-4 The Reflection and Transmission Coefficients…………...14 2-5 A Homogeneous Dielectric Film with Finite Thickness….16 2-6 Periodically Stratified Medium…………………………...18 Chapter 3 A DBR Containing DPS and DNG Media……...23 3-1 Introduction………………………………………………23 3-2 Numerical Results………………………………………..24 3-3 Conclusions……………………………………………....27 Chapter 4 Enhancement of Bandwidth in a Chirped Quarter-Wave Dielectric Mirror………………..28 4-1 Introduction………………………………………………28 4-2 Theory…………………………………………………….29 4-3 Numerical Results and Discussion………………………..31 4-4 Summary………………………………………………….36 Chapter 5 Multilayered Structure Containing a Zero-Permittivity Material……………………...38 5-1 Introduction……………………………………………...38 5-2 Design and Analysis……………………………………..39 5-3 Conclusion……………………………………………….42 Chapter 6 Conclusions……………………………………..43 References……………………………………………………..45 Publication Lists………………………………………………..v

    References

    1 http://www.photonic-lattice.com/en/Tech01.html
    2. Yablonovitch, E., “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
    3. John, S, “Strong localization of photons in certain disordered lattices,” Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
    4. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and L. E. Thomas, “A dielectric omnidirectional reflector,” Science, Vol. 282, 1679-1682, 1998.
    5. Winn. J. N., Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett., Vol. 23, 1573-1575, 1998.
    6. Srivastava, S. K. and S. P. Ojha, “Enhancement of omnidirectional reflection bands in one-dimensional photonic crystal structures with left-handed materials,” Progress In Electromagnetics Research, PIER 68, 91–111, 2007.
    7. Singh, S. K., J. P. Pandey, K. B. Thapa, and S. P. Ojha, “Structural parameters in the formation of omnidirectional high reflectors,” Progress In Electromagnetics Research, PIER 70, 53-78, 2007.
    8. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, “Omnidirection reflection in one dimensional photonic crystal,” Progress In Electromagnetics Research B, Vol. 7, 133-143, 2008.
    9. Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutger University, 2008, www.ece.rutgers.edu/~orfanidi/ewa
    10. http://www.macdiarmid.ac.nz/news/success/blaikie.php
    11. V. G. Veselago, “The electrodynamics of substances with simultaneously negative vaules of  and ,” Sov. Phys. Usp., vol. 10, no. 4, pp. 509-514, 1968.
    12. http://www.nanonet.go.jp/english/mailmag/2005/057b.html
    13. D. R. Smith, “Composite Medium with simultaneously negative permeability
    and Permittivity,” Phys. Rev. Lett. 84, 4184, 2000.
    14. R. A. Shelby, D. R. Smith and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292, 77, 2001.
    15. M. Notomi, “Theory of Light in Strongly Modulated Photonic Crystals : Refractionlike Behavior in the Vicinity of the Photonic Band Gap,” Phys. Rev. B 62, 10696, 2000.
    16. F. Abeles, Ann. De Physique vol. 5, pp. 596-640 and 706-782, 1950.
    17. Principles of Optics, page, 54, by M. Born and E. Wolf, 7th Edition, Cambrideg University Press, 1999.
    18. J. R. Canto, S. A. Matos, C. R. Paiva, and A. M. Barbosa, “Effect of Losses in a Layered Structure Containing DPS and DNG Media,” PIERS Online, vol. 4, no. 5, 2008.
    19. Peiponen, K. E., V. Lucarini, E. M. Vartiainen, and J. J. Saarinen, “Kramers-Kronig relations and sum rules of negative refractive index media,” Eur. Phys. J. B, Vol. 41, 61-65, September 2004.
    20. Yeh, P., Optical Waves in Layered Media (John Wiley & Sons, Singapore, 1991).
    21. Noda, S., T. Baba, Roadmap on Photonic Crystals (Kluwer Academic Publishers, 2003); Lourtioz, J.-M. et al., Photonic Crystals (Springer-Verlag Berlin Heidelberg, 2005); Yasumoto, K., Electromagnetic Theory and Applications for Photonic Crystals (Taylor & Francis, 2006).
    22. Srivastava, R., S. Srivastava, and S. P. Ojha, “Negative refraction by photonic crystal,” Progress In Electromagnetics Research B, Vol. 2, pp. 15-26, 2008.
    23. Kumar, N., and S. P. Ojha, “Photonic crystals as infrared broadband reflectors with different angles of incidence: A comparative study,” Progress In Electromagnetics Research, PIER 80, pp. 431-445, 2008.
    24. Srivastava, R., K. B. Thapa, S. Pati, S. P. Ojha, “Design of photonic band gap filter,” Progress In Electromagnetics Research, PIER 81, pp. 225-235, 2008.
    25. Srivastava, S. K., S. P. Ojha, “Omnidirectional reflection bands in one-dimensional photonic crystal structure using fullerene films,” Progress In Electromagnetics Research, PIER 74, pp. 181-194, 2007.
    26. Guida, G., “Numerical studies of disordered photonic crystals,” Progress In Electromagnetics Research, PIER 41, pp. 107-131, 2003.
    27. Li, H., H. Chen, and X. Qiu, “Bandgap extension of disordered 1D binary photonic crystals,” Physica B, vol. 279, pp. 164-167, 2000.
    28. Wang, X., X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett., vol. 80, pp. 4291-4293, 2002.
    29. Zi, J., J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett., vol. 73, pp. 2084-2086, 1998.
    30. Srivastava, R., S. Pati, and S. P. Ojha, “Enhancement of omnidirectional reflection in photonic crystal heterostructures,” Progress In Electromagnetic Research B, vol. 1, pp. 197-208, 2008.
    31. Singh, S. K., J. P. Pandey, K. B. Thapa, and S. P. Ojha, “Structural parameters in the formation of omnidirectional high reflectors,” Progress In Electromagnetics Research, PIER 70, 53-78, 2007.
    32. Lousse, V., S. Fan, “Tunable terahertz Bloch oscillations in chirped photonic crystals,” Phys. Rev. B, vol. 72, 075119, 2005.
    33. Bi, G., H. Wang, “A theoretical study of the chirped and apodized photonic crystals,” PIERS Online, vol. 1, 571-574, 2005.
    34 Yi Jin and Sailing He, “Impedance-matched multilayered structure containing a zero-permittivity material for spatial filtering,” Journal of Nonlinear Optical Physics & Materials , vol. 17, no. 3, 349-355, 2008.
    35. J. Brown, Proc. IEEE 100, 51, 1953.
    36. I. J. Bahl and K. C. Gupta, IEEE Trans. Antennas Propag. 22, 119, 1974.
    37. S. Enoch, G. Tayeb, P. Sabouroux, N. Gu´erin and P. Vincent, Phys. Rev. Lett. 89 213902, 2002.
    38. S. Enoch, B. Gralak and G. Tayeb, Appl. Phys. Lett. 81, 1588, 2002.
    39. I. Bulu, H. Caglayan and E. Ozbay, Appl. Phys. Lett. 83, 3263, 2003.
    40. A. Mart´ınez, M. A. Piqueras and J. Mart´ı, Appl. Phys. Lett. 89,131111, 2006.
    41. R. W. Ziolkowski, Phys. Rev. E 70, 046608, 2004.
    42. A. Alu, F. Bilotti, N. Engheta and L. Vegni, IEEE Trans. Antennas Propag. 54 1632, 2006.
    43. J. B. Pendry, A. T. Holden, W. J. Stewart and I. Youngs, Phys. Rev. Lett. 76 , 4773, 1996.
    44. J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075, 1999.
    45. D. E. Aspnes, Am. J. Phys. 50 , 704, 1982.

    無法下載圖示 本全文未授權公開
    QR CODE