研究生: |
陳梓瑄 Chen, Zi-Xuan |
---|---|
論文名稱: |
心跳感測器輔助影像深度學習應用於臉部痛苦指數之判別 Heartbeat sensor-assisted image depth learning applied to the identification of facial pain index |
指導教授: |
陳美勇
Chen, Mei-Yung |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 卷積神經網路 、電腦視覺 、心跳感測器 |
英文關鍵詞: | Convolution Neural Network, Computer vision, Heartbeat sensor |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DME.016.2018.E08 |
論文種類: | 學術論文 |
相關次數: | 點閱:172 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出了一種估計人臉疼痛強度的方法。使用回歸卷積神經網路訓練模型,其中包含三層卷積層及三層池化層。此外,使用心跳感測器幫助臉部疼痛識別,目的是更準確地判斷人的疼痛程度。在兩個感測器的偵測及相互輔助下,可以極大程度的預防危險性的發生。例如使用在跑步、復健及醫療上,若能夠第一時間偵測到使用者的痛苦指數及心跳數異常,將能有效且迅速的做第一時間的處理。同時,本論文另一個貢獻為根據醫療及運動等相關文獻做出實際測試結果,將心跳感測與臉部疼痛做出結合與應用,並且能實際應用於生活當中。
本研究結果顯示,i5雙核計算機的MSE為0.11,Pearson相關係數接近1(r = 0.98),平均運算速度達到70 FPS。除了能夠高速運算臉部痛苦指數,也能迅速對硬體下達指令。
In this paper, a method for estimating the intensity of pain in human face is presented. Human face image is extracted by using Convolution Neural Network (CNN) and max pooling. Both facial image and pain index will be computed by the regression Convolution neural network, whose training results are verified. In addition, used a heartbeat sensor to assist facial pain recognition in order to more accurately detect pain in a person. The detection of two sensors can greatly prevent the occurrence of danger. For example, in running, rehabilitation and medical care. If we can detect the user's condition for the first time, we will be able to deal with it effectively and quickly. At the same time, another contribution of this paper is to make the actual test results according to the medical and sports related paper. It combined the heartbeat sensation with facial pain, and can be applied in real life.
In terms of accuracy, the mean squared error is 0.11, and the correlation coefficient is 0.98. In terms of execution speed, the average computing speed achieves 75 FPS on the i5 dual-core computer. In addition to being able to calculate face pain index at high speed, it can also quickly send instructions to hardware.
一、中文文獻
『耐力網心率區間檢測』, available: http://center4gaming.org/c4g/index.php/estimate/index . July.2018.
Lin Kao-Yuan, “Implemented Rapid Pain Intensity Estimation from Facial Image using Artificial Neural Network,” 台灣台北: 國立臺灣師範大學機電工程學系碩士論文,2016.
二、英文文獻
"Facial Action Coding System," Wikimedia Foundation, Inc, [Online]. Available: https://en.wikipedia.org/wiki/Facial_Action_Coding_System. [Accessed 25 2 2016].
K.M. Prkachin, P. E. Solomon, “The structure, reliability and validity of pain expression: Evidence from patients with shoulder pain,” Pain, 139, pp. 267-274, 2008.
P. Lucey, J.F. Cohn, K.M. Prkachin, P. E. Solomon, I. Matthews, “Painful data: The UNBC-McMaster shoulder pain expression archive database,” in Automatic Face & Gesture Recognition and Workshops, 2011 IEEE International Conference on (pp. 57-64), 2011.
A. Krizhevsky, I. Sutskever, E. Hinton Geoffrey, “Imagenet classification with deep convolutional neural networks,” Advances in neural information processing systems, pp. 1097-1105, 2012.
L. Loggia Marco, Mylène Juneaua, M. Catherine Bushnell, “Autonomic responses to heat pain: Heart rate, skin conductance, and their relation to verbal ratings and stimulus intensity,” Pain, 152(2011), pp. 592-598.
K. Sebastian, O. Rudovic, P.Maja, “Continuous pain intensity estimation from facial expressions,” Advances in Visual Computing, pp. 368-377, 2012.
C. Florea, L. Florea, R. Boia, A. Bandrabur, C. Vertan, “Pain intensity estimation by a Self--Taught Selection of Histograms of Topographical Features,” 2016. [Online]. Available: http://arxiv.org/abs/1503.07706.
“CS231n Convolutional Neural Networks for Visual Recognition,” [Online]. Available: http://cs231n.github.io/neural-networks-3/.[Accessed 15 6 2016].
V. Paul, J. Michael, “Robust Real-Time Face Detection ,” International Journal of Computer Vision, pp. 137-154, 5 2004.
X. Hong, G. Zhao, S. Zafeiriou, M. Pantic, M. Pietikäinen, “Capturing correlations of local features for image representation,” Neurocomputing, pp. 99-106, 2016.
S.Kaltwang, O.Rudovic, and M.Pantic. “Continuous pain intensity estimation from facial expressions,” In Advances in Visual Computing, pp. 368–377, Springer,2012.
Maxim integrated. MAX30100 pulse Oximeter and Heart-Rate Sensor ICs Datasheet, available: https://datasheets.maximintegrated.com/en/ds/MAX30100.pdf . July.2018.
C.Florea, L. Florea, and C. Vertan, “Learning pain from emotion: transferred hot data representation for pain intensity estimation,” In Computer Vision-ECCV 2014 Workshops, pages 778–790, Springer, 2014.
Z. Yu and C. Zhang., “Image based Static Facial Expression Recognition with Multiple Deep Network Learning,” In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 435–442, ACM, 2015.
R.A. Robergs. “The surprising history of the "HRmax=220-age" equation" equation,” Journal of Exercise Physiology Online, 5(2), pp. 1-10.
R. Baechle Thomas, W. Earle Roger. “Essential of strength training and conditioning 3rd edition.” 493. National Strength and Conditioning Association(U.S.): Human Kinetics.
J. Daniels, “Daniels’ Running Formula,” Human Kinetics, 2004.