簡易檢索 / 詳目顯示

研究生: 陳億昇
Yi Sheng Chen
論文名稱: 奈米記錄點的動態寫入與量測研究
Study of Nano Recording Marks with Dynamic Record and Measuremen
指導教授: 蔡定平
Tsai, Din-Ping
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 99
中文關鍵詞: 相變化材料載子訊雜比光學解析極限原子力顯微儀記錄點週期性結構
英文關鍵詞: Ge2Sb2Te5, CNR, spatial resolution limit, AFM, recording mark, periodic structure
論文種類: 學術論文
相關次數: 點閱:191下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,使用動態測試儀 (Dynamic Optical Disk Tester) 量測以ZnS-SiO2包夾初鍍態Ge2Sb2Te5相變化材料光碟之載子訊雜比 (Carrier-to-Noise Ratio,CNR),可以量測到光學解析極限以下記錄點之載子訊雜比。研究為何無光學非線性作用層之碟片仍可解析光學解析極限以下記錄點,使用動態測試儀在平坦碟片上寫下光學解析極限以下尺寸之記錄點,再以原子力顯微儀 (Atomic Force Microscope,AFM ) 掃描其表面形貌發現寫下一週期性結構,其週期為記錄點兩倍。使用動態測試儀讀取記錄點時,是讀取光強度隨時間變化的連續過程,所以當動態測試儀讀取此週期性結構時便可量測到對應之載子訊雜比,同時我們也研究此週期性結構之形成原因。

    In this thesis, Carrier-to-Noise Ratio (CNR) of different mark sizes is measured by a dynamic optical disk driver tester. The layer structure of phase-change disk is as-deposited Ge2Sb2Te5 sandwiched by ZnS-SiO2. CNR measurement shows that recording marks beyond the spatial resolution limit can be readout. We use dynamic optical disk driver tester to record recording marks beyond the spatial resolution limit on plane phase-change thin film. The topography images of recording marks are scanned by Atomic Force Microscope (AFM), and AFM images indicate that recording marks beyond spatial resolution are periodic structures. In CNR measurement, the laser pick-up head of dynamic optical disk driver tester receive the change of reflective laser beam with time. When the periodic structures are read by laser pick-up head, the Carrier-to-Noise Ratio can be readout. The process of periodic structure formation is well studied.

    致謝…………………………………………………………………I 中文摘要……………………………………………………………II 英文摘要……………………………………………………………III 目錄…………………………………………………………………IV 圖目錄………………………………………………………………IX 表目錄………………………………………………………………XV 第一章、緒論………………………………………………………1 1-1前言……………………………………………………………1 1-2 光儲存媒體發展………………………………………………1 1-3 光碟片讀取原理及結構簡介…………………………………4 1-4 儲存容量的提升………………………………………………6 1-5 近場光學儲存…………………………………………………8 1-5-1 近場光學記錄…………………………………………….8 1-5-2固態浸沒透鏡式光學讀寫頭………………………………9 1-5-3 近場結構碟片……………………………………………11 1-6 相變化材料特性……………………………………………13 1-6-1 相變化……………………………………………………13 1-6-2 結晶過程…………………………………………………16 1-6-3 相變化材料發展…………………………………………17 1-7二極體雷射基本特性………………………………………20 第二章、儀器設備及基本原理…………………………………22 2-1 前言…………………………………………………………22 2-2濺鍍機………………………………………………………22 2-2-1 濺鍍機簡介……………………………………………22 2-2-2濺鍍機工作原理…………………………………………23 2-2-2-1 直流二極濺鍍法……………………………………23 2-2-2-2 射頻濺鍍法…………………………………………24 2-3動態測試儀………………………………………………24 2-3-1 動態測試儀簡介………………………………………24 2-3-2 寫入機構及元件功能…………………………………26 2-3-2-1 碟片乘載機構………………………………………26 2-3-2-1 雷射讀寫頭…………………………………………27 2-3-3 伺服控制………………………………………………29 2-3-3-1 動態對焦……………………………………………29 2-3-3-1動態循軌………………………………………………30 2-3-4 寫入記錄點……………………………………………30 2-3-4-1 記錄點寫入流程……………………………………30 2-3-4-2 寫入策略……………………………………………31 2-3-4-3 記錄點長度…………………………………………32 2-3-5 讀取記錄點與載子訊雜比……………………………32 2-4 原子力顯微儀……………………………………………34 2-4-1 原子力顯微儀簡介……………………………………34 2-4-2原子力顯微儀之工作模式………………………………35 2-4-2-1 接觸式………………………………………………35 2-4-2-2 非接觸式……………………………………………35 2-4-2-3 輕敲式………………………………………………36 2-4-3 儀器架構………………………………………………36 2-4-4 實驗樣品掃探…………………………………………37 第三章、樣品製作與實驗結果討論…………………………39 3-1介電質包夾相變化記錄層碟片之載子訊雜比…………39 3-1-1 前言……………………………………………………39 3-1-2 實驗樣品結構…………………………………………39 3-1-3 量測參數………………………………………………40 3-1-4 實驗結果………………………………………………41 3-1-4-1 不同寫入功率雷射對載子訊雜比影響……………41 3-1-4-2 記錄點尺寸與雷射寫入及讀取功率關係…………44 3-1-4-3 最佳化之載子訊雜比………………………………46 3-1-5 實驗結果討論…………………………………………47 3-2 奈米級凹陷結構製作……………………………………47 3-2-1 前言……………………………………………………47 3-2-2 實驗樣品結構…………………………………………48 3-2-3 實驗參數………………………………………………49 3-2-4 實驗結果………………………………………………50 3-2-4-1 重複寫入記錄點……………………………………50 3-2-4-2 奈米級凹陷結構形成原因…………………………53 3-3奈米短週期結構…………………………………………54 3-3-1 前言……………………………………………………54 3-3-2 實驗樣品結構…………………………………………55 3-3-3 實驗參數………………………………………………55 3-3-4 實驗結果………………………………………………56 3-3-4-1 雷射寫入功率5mW……………………………………56 3-3-4-2 雷射寫入功率6mW……………………………………59 3-3-4-3 雷射寫入功率7mW……………………………………62 3-3-4-4 雷射寫入功率8mW……………………………………65 3-3-5實驗結果分析討論………………………………………68 3-4 短週期結構形成原因………………………………………71 3-4-1 前言………………………………………………………71 3-4-2 實驗樣品及雷射寫入參數………………………………71 3-4-3 實驗結果…………………………………………………75 3-4-3-1 寫入策略週期400nm…………………………………75 3-4-3-2 寫入策略週期360nm…………………………………77 3-4-3-3 寫入策略週期320nm…………………………………80 3-4-3-4 寫入策略週期280nm…………………………………82 3-4-3-5 寫入策略週期240nm…………………………………84 3-4-3-6 寫入策略週期200nm…………………………………86 3-4-4 實驗結果分析與討論…………………………………88 第四章、結論…………………………………………………93 參考文獻………………………………………………………95

    [1] 許智清,林威志,蔡定平,“先進光儲存技術”,行政院國科會光電小組 (2004)。
    [2] 藍光光碟,維基百科 http://zh.wikipedia.org 。
    [3] HD DVD,維基百科 http://zh.wikipedia.org 。
    [4] 德丸春樹等著,郭嘉龍譯,”圖解DVD手冊”,全華科技圖書 (2004)。
    [5] Blu-ray Disc White paper, 1.C Physical Format Specifications for BD-ROM 4th Edition (2005).
    [6] E. Betzig, P. L. Finn and J. S. Weiner, "Combined shear force and near-field scanning optical microscopy", Appl. Phys. Lett., 60, 2484 (1992).
    [7] B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund and G. S. Kino, "Near-field optical data storage using a solid immersion lens", Appl. Phys. Lett. 65, 388 (1994).
    [8] J. Tominoga, T. Nakano and N. Atoda, "Super-resolution structure for optical data storage by near-field optics" , SPIE Proc., 3467, 282 (1998).
    [9] Hsun-Hao Chang, Bing-Mau Chen, Tsung Sheng Kao, Wei Chih Lin, Din Ping Tsai, "Super-resolution write-once optical disk with self-activated localized surface plasmon effects on phase-change recording layer", ISOM Proc., We-PP-14 (2003).
    [10] 蔡定平,林威志, “近場光碟片最近的發展",光訊, 第八十七期,14-20頁,(2001)。
    [11] 林威志, 蔡定平, “超解析結構之近場光碟片的製作", 光訊,第八十九期,45頁,(2001)。
    [12] 劉威志,林威志,蔡定平, “高密度近場光碟片",物理,第二十三卷第二期,335-345頁,(2001)。
    [13] 林威志,蔡定平,劉威志, “超解析結構近場光碟片最近的研究與發展",光學工程,78期,20頁,(2002)。
    [14] 鞠岱琦,林威志, “近場光碟的發展與應用",自然科學簡訊,14卷4期,126頁,(2002)。
    [15] 林威志,蔡定平, “近場光學儲存碟片的發展",光訊 99期,8頁,(2002)。
    [16] 蔡松雨, “工業材料雜誌",188,113,(2002)。
    [17] 過冷溶液http://tw.knowledge.yahoo.com/question/?qid=1405121607426 。
    [18] R. Zallen, "The Physics of Amorpous Solids", John Wiley and Sons, New York (1983).
    [19] M. Wuttig and N. Yamada, "Phase-change materials for rewriteable data storage", Nature Materials 6, 824 - 832 (2007).
    [20] T. Ohta, "Phase-Change Optical Memory Promotes the DVD Optical Disk", J. Opt. Adv. Mat. 3, 609 (2001).
    [21] 徐豪汶, “鍺銻碲相變化奈米薄膜之奈米尺度光熱性質的究”,碩士論文, 中央物理研究所 (2006)。
    [22] G. F. Zhou, H. J. Borg, J. C. N. Rijpers, and M. Lankhorst, "Crystallization behavior of phase change materials: comparison between nucleation- and growth-dominated crystallization", Optical Data Storage, Conference Digest, (2000).
    [23] Benno Tieke, Martijn Dekker, Nicola Pfeffer, Roel van Woudenberg, Guo-Fu Zhou, and Igolt P. D. Ubbens, "High data-rate phase-change media for the digital video recording system", Jpn. J. Appl. Phys. 39, 762 (2000).
    [24] S. R. Ovshinsky, "Reversible electrical switching phenomena in disordered structures", Phys. Rev. Lett. 21, 1450 (1968).
    [25] J.Feinleib, J.deNeufville, S.C. Moss, and S.R.Ovshisky, "Rapid reversible light-induced crystallization of amorphous semiconductors", Appl. Phys. Lett. 18, 254 (1971).
    [26] J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, and B. A. J. Jacobs, "Laser-induced crystallization phenomena in GeTe-based alloys. I. Characterization of nucleation and growth", J. Appl. Phys. 78, 4096 (1995).
    [27] 嚴昱賢, “初鍍態鍺銻碲相變化薄膜上之記錄點形成研究”,碩士論文,台灣大學物理學研究所 (2007)。
    [28] 許智清, “近場高密度光碟片之奈米記錄點的動態光電檢測”,碩士論文,台灣海洋大學光電科學研究所 (2005)。
    [29] 高宗聖, “氧化鋅複合材料奈米薄膜之近場超解析結構”,碩士論文,台灣大學物理學研究所 (2007)。
    [30] 紀國鐘,蘇炎坤, ”光電半導體技術手冊”,經濟部技術處 (2002)。
    [31] M. Born, E. Wolf. Principles of Optics, Oxford. Pergamon, 81 (1959).
    [32] Eugene Hecht. OPTICS, Wesley (2001).
    [33] S. K. Lin, I. C. Lin, and D. P. Tsai, "Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks", Optics Express, Vol. 14, Issue 10, 4452-4458 (2006).
    [34] M. Miyamoto, A. Hirotsune, Y. Miyauchi, K. Ando, M. Terao, N. Tokusyuku, and R. Tamura, "Analysis of Mark-Formation Process for Phase-Change Media", IEEE J. Quantum Electron. 4826-831 (1998).
    [35] J. Park, M. R. Kim, W. S. Choi, H. Seio and C. Yeon, "Characterization of Amorphous Phases of Ge2Sb2Te5 Phase-Change Optical Recording Material on Their Crystallization Behavior", Jpn. J. Appl. Phys. 38 4775–4779 (1999).
    [36] E. R. Meinders and M. H. R. Lankhorst, "Determination of the Crystallisation Kinetics of Fast-Growth Phase-Change Materials for Mark-Formation Prediction", Jpn. J. Appl. Phys. 42 809–812 (2003).
    [37] E. Small, J. Reifenberg, Y. Yang, S. M. Sadeghipour, and M. Asheghi, "Numerical Simulation of Mark Formation/Erasure in Phase Change Recording", Proceedings of ASME (2005).
    [38] D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, C. J. Yeh, "Dynamic Aperture of Near-Field Super Resolution Structures", Jpn. J. Appl. Phys., 39, 982 (2000).
    [39] D. P. Tsai, W. C. Lin, "Probing the near fields of the super-resolution near-field optical structure", Appl. Phys. Lett., 77, 1413 (2000).
    [40] W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin, D. P. Tsai, "Near-field images of the AgOx-type super-resolution near-field structure", Appl. Phys. Lett., 78, 685 (2001).

    [42] T. Fukaya, D. Buechel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, W. C. Lin, J. Appl. Phys., "Micro-optical nonlinearity of a silver oxide layer", 89, 6139 (2001).
    [43] Y . Guo, H. Ming, L Tang, Y. H. Lu, P. Wang, D. P. Tsai, W. C. Lin, "The size effect in the AgOx-type super-resolution near-field structure", Opt. Comm., 212, 7 (2002).
    [44] W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, D. P. Tsai, "Study of a Super-Resolution Optical Structure: Polycarbonate/ZnS–SiO2/ZnO/ZnS–SiO2/Ge2Sb2Te5/ZnS–SiO2", Jpn. J. Appl. Phys., 42, 1029 (2003).
    [45] K. P. Chiu, W. C. Lin, Y. H. Fu, D. P. Tsai, "Calculation of Surface Plasmon Effect on Optical Discs", Jpn. J. Appl. Phys, 43, 4730 (2004).
    [46] S. K. Lin, I C. Lin, and D. P. Tsai, "Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks", Optics Express, 10, 4452 (2006).
    [47] M. Kuwahara, J.H. Kim, J. Tominaga, "Dot formation with 170-nm dimensions using a thermal lithography technique", Microelectronic Engineering 67-68 (2003).
    [48] K. Kurihara, Y. Yamakawa, T. Nakano and J. Tominaga, "High-speed optical nanofabrication by platinum oxide nano-explosion", J. Opt. A: Pure Appl. Opt. 8 S139–S143 (2006).
    [49] K. Kurihara , T. Nakano , H. Ikeya , M. Ujiie , J. Tominaga, "High-speed fabrication of large-area nanostructured optical devices", Microelectronic Engineering (2008).
    [50] F. Jedema, "Designing optical Media of the future", News&Reviews, Nature Materials, 6 (2007).
    [51] P. K. Khulbe, E. M. Wright, and M.Mansuripur, "Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 films", J. Appl. Phys. 88, 3926 (2000).
    [52] E. Small, Y. Yang, S. M. Sadeghipour, and M. Asheghi, "Simulation of the writing on the patterned optical phase-change recording media", J. Appl. Phys. 99, 033100 (2006).

    無法下載圖示 本全文未授權公開
    QR CODE