簡易檢索 / 詳目顯示

研究生: 王弘毅
Wang, Hong-Yi
論文名稱: 以金銅核殼奈米粒子電催化二氧化碳還原反應
CO2 electrocatalytic reduction with gold-copper core-shell nanoparticles
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 108
中文關鍵詞: 二氧化碳還原電化學還原電催化還原銅奈米粒子金銅核殼奈米粒子
英文關鍵詞: Carbon dioxide reduction, Electroreduction, Electrocatalytic reduction, Copper nanoparticles, Gold-copper core-shell nanoparticles
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.039.2018.B05
論文種類: 學術論文
相關次數: 點閱:226下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化碳為造成地球上溫室效應的因素之一,因此如何降低二氧化碳的含量,便是人類近年來主要的研究課題。其中,使用電催化二氧化碳還原是其中一種重要的方法。由文獻已知使用銅金屬催化,相對於其他金屬,銅可以產生較多碳氫類產物,例如甲烷、乙烯、甲醇、乙醇等等。不過,目前的研究對於銅的催化效果尚未有定論。本篇試圖以金銅核殼奈米結構探討其催化效果,以及不同晶面對還原產物選擇性的影響。其中晶型分別為含有(111)晶面的立方體與含有(111)晶面的八面體,並由TEM、SEM、XRD、UV鑑定其結構。而還原產物以GC-TCD和GC-FID作分析,並以各產物的法拉第電流效率值來判定產物的選擇性。由實驗分析,純銅奈米立方體的還原產物主要為乙烯,純銅奈米八面體的還原產物主要為甲烷,金銅核殼奈米立方體在不同電壓下主要產物不盡相同,但是可以提高乙醇的電流效率,推斷金的加入可以降低部分反應機構的活化能,使反應機構中需要傳遞較多電子的醇類得以容易產生。

    Carbon dioxide is one of the factor of global warming; therefore, it is an important issue for human being that how to reduce the capacity of carbon dioxide. One of them is catalyze carbon dioxide reduction used electricity. According to literature, using copper-like catalysts could produce more hydrocarbon than other metal catalysts. For instance, methane, ethylene, methanol and ethanol, etc. However, there are no accurate conclusion on efficiency of copper-like catalysts so far. We try to explore about the efficiency of gold-copper core-shell nanoparticle, and discuss how different crystal plane could influence the selectivity of product. We synthesis cubes structure which include (100) crystal plane and octahedral structure which include (111) crystal plane. First, we use TEM, SEM, XRD AND UV-Vis to characterize the structure. Second, we use GC-TCD and GC-FID to analysis the product after reduction. Third, we calculate the Faradic efficiency of every reduction product to judge the selectivity. By experiments, major reduction product of copper nano-cubes is ethylene, and copper nano-octahedral is methane. However, major reduction product of gold-copper core-shell nano-cubes is not identical at different voltage, yet it could increase the Faradic efficiency of ethanol. We assume that adding gold element could decrease the activation energy of a part of elementary reaction step, causing that alcohols which include more electron transfer could produce more easily.

    總目錄 I 圖目錄 V 表目錄 X 摘要 XI Abstract XII 第一章 緒論 1 1-1 二氧化碳 1 1-1-1 全球暖化 1 1-1-2 二氧化碳還原反應 3 1-1-2-1 光催化還原二氧化碳 4 1-1-2-2 電催化還原二氧化碳 7 1-1-3 二氧化碳在水溶液中的平衡 8 1-1-3-1 pH值的選擇 9 1-1-3-2 陰離子的選擇 11 1-1-3-3 陽離子的選擇 12 1-1-3-4 濃度的選擇 13 1-1-4 二氧化碳還原電位與過電位 13 1-1-5 法拉第效率 17 1-2 奈米材料 18 1-2-1 奈米材料定義 18 1-2-2 奈米材料的特性 19 1-2-3 奈米材料的製程 22 第二章 文獻回顧與動機 24 2-1 各類金屬電極電催化二氧化還原反應 24 2-2 純銅材料電催化二氧化碳還原 29 2-3 銅金雙金屬奈米複合材料電催化二氧化碳還原 34 2-4 銀銅核殼奈米複合材料電催化二氧化碳還原 37 2-5 研究動機 40 第三章 實驗儀器 41 3-1 材料鑑定儀器與原理 41 3-1-1 穿透式電子顯微鏡(Transmission electron microscope) 41 3-1-2 掃描式電子顯微鏡(Scanning electron microscope) 42 3-1-3 場發射穿透式電子顯微鏡(Field emission transmission electron microscope) 44 3-1-4 X光繞射分析儀(X-ray diffraction) 45 3-1-5 紫外光-可見光吸收儀(UV-Vis spectroscopy) 47 3-2 電化學測量儀器 48 3-2-1 恆定電位儀 48 3-2-2 電極 48 3-2-3 線性掃描伏安法(Linear sweep voltammetry, LSV) 52 3-2-4 循環伏安法(Cyclic voltammetry, CV) 52 3-2-5 計時電流法(Chronoamperometry, CA) 53 3-3 產物分析儀器 54 3-3-1 氣相層析儀(Gas chromatography, GC) 54 3-3-2 熱導偵測器(Thermal conductivity detector, TCD) 58 3-3-3 火焰離子偵測器(Flame ionization detector, FID) 58 第四章 材料合成與實驗步驟 59 4-1 實驗藥品 59 4-2 材料合成步驟與原理 61 4-2-1 銅奈米立方體製備 61 4-2-2 銅奈米八面體製備 63 4-2-3 金奈米八面體製備 64 4-2-4 金銅核殼奈米立方體製備 65 4-3 二氧化碳還原實驗裝置架設 67 4-4 電化學測試與產物分析流程 68 4-4-1 工作電極前處理與製備 68 4-4-2 二氧化碳還原測試流程 69 4-4-3 法拉第效率的計算 72 第五章 結果與討論 73 5-1 材料合成的鑑定 73 5-1-1 銅奈米粒子之鑑定 73 5-1-2 金銅核殼奈米粒子之鑑定 77 5-2 電化學測試 83 5-2-1 不同尺寸的銅奈米粒子之比較 83 5-2-2 銅奈米立方體與金銅核殼奈米立方體之比較 86 5-2-3 計時電流法與穩定度 88 5-3 產物分析 91 5-3-1 各種還原產物的法拉第效率 91 5-3-2 產物選擇性分析 95 5-3-2-1 二氧化碳還原與析氫反應 95 5-3-2-2 一氧化碳與甲酸 97 5-3-2-3 甲烷與乙烯 101 5-3-2-4 甲醇與乙醇 103 第六章 結論與未來展望 105 第七章 參考文獻 106

    (1) Division., N. O. A. A. E. S. R. L. G. M. Trends in Atmospheric Carbon Dioxide. 2018; Available from: https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_full.html.
    (2) 中央氣象局. 什麼是溫室效應? ; Available from: https://www.cwb.gov.tw/V7/climate/climate_info/climate_change/change_6/change_6-3.html.
    (3) Tans, P. In 科學人雜誌; 59 ed. 2007.
    (4) Studies., N. A. a. S. A. G. I. f. S. GISS Surface Temperature Analysis. 2018; Available from: https://data.giss.nasa.gov/gistemp/graphs/.
    (5) da Silva Costa, P. H.; Teixeira, L. M. A.; Pinheiro, J. C.; de Arruda, F. S.; de Mendonça Brasil, A. C. Transportation Research Procedia 2016, 18, 122.
    (6) Takeda, H.; Cometto, C.; Ishitani, O.; Robert, M. ACS Catalysis 2017, 7, 70.
    (7) Rodriguez, J. A.; Liu, P.; Stacchiola, D. J.; Senanayake, S. D.; White, M. G.; Chen, J. G. ACS Catalysis 2015, 5, 6696.
    (8) Li, K.; Peng, B.; Peng, T. ACS Catalysis 2016, 6, 7485.
    (9) Stolarczyk, J. K.; Bhattacharyya, S.; Polavarapu, L.; Feldmann, J. ACS Catalysis 2018, 8, 3602.
    (10) Xie, S.; Zhang, Q.; Liu, G.; Wang, Y. Chemical Communications 2016, 52, 35.
    (11) White, J. L.; Baruch, M. F.; Pander, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y.; Shaw, T. W.; Abelev, E.; Bocarsly, A. B. Chemical Reviews 2015, 115, 12888.
    (12) Chang, X.; Wang, T.; Gong, J. Energy & Environmental Science 2016, 9, 2177.
    (13) Ma, Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C. Chemical Reviews 2014, 114, 9987.
    (14) Shi, C.; Chan, K.; Yoo, J. S.; Nørskov, J. K. Organic Process Research & Development 2016, 20, 1424.
    (15) Zhang, Y.-J.; Sethuraman, V.; Michalsky, R.; Peterson, A. A. ACS Catalysis 2014, 4, 3742.
    (16) Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energy & Environmental Science 2012, 5, 7050.
    (17) Hori, Y.; Suzuki, S. Bulletin of the Chemical Society of Japan 1982, 55, 660.
    (18) Pourbaix., M., Atlas D'Equilibres Electrochimiques. 1963.
    (19) Gattrell, M.; Gupta, N.; Co, A., A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. Vol. 594. 2006. 1.
    (20) Hori, Y.; Murata, A.; Takahashi, R. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1989, 85, 2309.
    (21) Murata, A.; Hori, Y. Bulletin of the Chemical Society of Japan 1991, 64, 123.
    (22) Kyriacou, G. Z.; Anagnostopoulos, A. K. Journal of Applied Electrochemistry 1993, 23, 483.
    (23) Dean, J. A., Lange’s handbook of chemistry. 1985.
    (24) Jirm Koryta, J. D., Principles of Electrochemistry. 1994. 174.
    (25) Roy, A.; Watson, S.; Infield, D. International Journal of Hydrogen Energy 2006, 31, 1964.
    (26) Crow, D. R., Principles and Applications of Electrochemistry. 1994.
    (27) Kunusch, C.; Puleston, P. F.; Mayosky, M. A.; Moré, J. J. International Journal of Hydrogen Energy 2010, 35, 5876.
    (28) Liu, S.; Tang, Z. Journal of Materials Chemistry 2010, 20, 24.
    (29) Lau, K. Y.; M. Piah, M. A., Polymer Nanocomposites in High Voltage Electrical Insulation Perspective: A Review. Vol. 6. 2011.
    (30) Nalwa, H. S., Encyclopedia of Nanoscience and Nanotechnology. 2004.
    (31) Gatteschi, D.; Sessoli, R. Angewandte Chemie International Edition 2003, 42, 268.
    (32) Miller Joel, S.; Epstein Arthur, J. Angewandte Chemie International Edition in English 1994, 33, 385.
    (33) Takagahara, T.; Takeda, K. Physical Review B 1992, 46, 15578.
    (34) Pareek, V.; Bhargava, A.; Gupta, R.; Jain, N.; Panwar, J., Synthesis and Applications of Noble Metal Nanoparticles: A Review. Vol. 9. 2017. 527.
    (35) Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochimica Acta 1994, 39, 1833.
    (36) Vayenas, C. G., White, R. E., Gamboa-Aldeco, M. E., Eds., Modern Aspects of Electrochemistry. 2008.
    (37) Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. Journal of the American Chemical Society 2014, 136, 14107.
    (38) Hori, Y.; Murata, A.; Kikuchi, K.; Suzuki, S. Journal of the Chemical Society, Chemical Communications 1987, 728.
    (39) Pacansky, J.; Wahlgren, U.; Bagus, P. S. The Journal of Chemical Physics 1975, 62, 2740.
    (40) Freund, H. J.; Messmer, R. P. Surface Science 1986, 172, 1.
    (41) Noda, H.; Ikeda, S.; Oda, Y.; Ito, K. Chemistry Letters 1989, 18, 289.
    (42) Gupta, N.; Gattrell, M.; MacDougall, B. Journal of Applied Electrochemistry 2006, 36, 161.
    (43) Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. Nature Communications 2014, 5, 4948.
    (44) Chang, Z.; Huo, S.; Zhang, W.; Fang, J.; Wang, H. The Journal of Physical Chemistry C 2017, 121, 11368.
    (45) Douglas A. Skoog, F. J. H., Stanley R. Crouch., Principles of Instrumental Analysis. 6 ed. 2006.
    (46) Harris, D. C., Quantitative Chemical Analysis. 8 ed. 2011.
    (47) W. H. Bragg, W. L. B. Proceedings of the Royal Society of London. Series A 1913, 88, 428.
    (48) Yang, H.-J.; He, S.-Y.; Chen, H.-L.; Tuan, H.-Y. Chemistry of Materials 2014, 26, 1785.
    (49) Lu, S.-C.; Hsiao, M.-C.; Yorulmaz, M.; Wang, L.-Y.; Yang, P.-Y.; Link, S.; Chang, W.-S.; Tuan, H.-Y. Chemistry of Materials 2015, 27, 8185.
    (50) Chang, C.-C.; Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Chemistry of Materials 2008, 20, 7570.
    (51) Hsia, C.-F.; Madasu, M.; Huang, M. H. Chemistry of Materials 2016, 28, 3073.
    (52) 陳威廷,國立臺灣師範大學化學系碩士論文 2015.

    下載圖示
    QR CODE