簡易檢索 / 詳目顯示

研究生: 陳雅芊
Chen, Ya-Chien
論文名稱: 以溝通式教學策略發展國中科學課堂裡的探究式對話之行動研究
An Action Research on Using Communicative Approaches to Foster Discourse of Inquiry in Science Class of a Junior High School
指導教授: 林君憶
Lin, Chun-Yi
口試委員: 陳麗華 陳育霖 林君憶
口試日期: 2022/01/18
學位類別: 碩士
Master
系所名稱: 課程與教學研究所
Graduate Institute of Curriculum and Instruction
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 220
中文關鍵詞: 溝通式教學策略探究式教學探究式對話科學教育
英文關鍵詞: Communicative approaches, Inquiry-based teaching, Discourse of inquiry, Science education
研究方法: 行動研究法
DOI URL: http://doi.org/10.6345/NTNU202200117
論文種類: 學術論文
相關次數: 點閱:190下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中在探究5E教學模式下,如何運用溝通式教學策略發展科學課室中探究式對話。本研究探討以下研究問題:(一)教師如何在探究教學歷程中,運用溝通式教學策略以發展科學課堂中的探究式對話。(二)教師在實施歷程中面臨的困境與因應之道。

    本研究為行動研究,研究參與者為研究者任教之北部某國中八年級某班學生。為了發展課室中的探究式對話,研究者以5E教學模式結合溝通式教學策略為理論基礎,設計共 20節教學方案,單元內容包含理化科波動及光學。接著,由研究者進行六週的教學,過程中研究者每週進行探討與修正,包含分析資料並與協同研究者討論、反思來調整已實施的教學方案並檢視後續的教學策略設計。本研究發現包含:
    (一) 在教師教學層面,可根據單元性質、5E探究歷程各階段之教學目的,以及當下的情形作策略選擇,在合適的時機發展學生的探究對話。
    (二) 在學生學習層面,教師運用「多種聲音、多種想法」的溝通式教學策略能提供學生大量發展探究對話,培養與教師及同儕進行對話之能力,也可以在課堂後延伸探索。
    (三) 為讓學生協同探究時能更投入於探索,教師應提高挑戰。學生若具體瞭解學習任務及目標,便能透過探究對話與同儕協作處理更高層次的挑戰而獲得成就感,持續其學習動機。
    (四) 教師實施時,除了課程的充分設計,也需進行學習者評估,讓學生有足夠時間去理解彼此的想法。透過溝通進行更高複雜性探索,因此教師在時間及方法上應保留調整空間。
    (五) 反思能夠幫助學生檢視自我學習,也藉機讓學生理解分組學習的意義——在科學對話中,透過與他人協作可獲得更多能力以處理更高的挑戰,也增加學習的擁有感。

    根據結果,本研究建議:針對科學教學,探究式對話課程能夠讓學生透過參與發現自己的潛能,而科學探究的學習方法也能培養學生的科學精神。針對相關領域之研究者,首先,初始研究設計應選擇核心概念,保留彈性調整的空間。第二,質性資料應隨時保持於蒐集與分析並進,才能持續修正教學。第三,針對特定學生進行長期的研究,探討對話在學生端的發展歷程。期許學生們長期在科學教師們共同發展探究對話的歷程中,能夠培養獨立思考、協同合作的科學素養,以增進自然科學學習的能力,且能回應真實世界中所遇之科學問題。而針對現場初任教師,首先,要讓自己追隨著心流狀態,逐漸增加挑戰、增進探究教學能力;莫急於一時,一次只做一件事。第二,透過與他人分享教學故事,可以獲得更有意義的反思與發現。

    In this research, under the context of the 5E instructional model, the communicative approaches are used as the main theoretical basis to develop discourse of inquiry in science class. According to the research purpose, two research questions are extended to explore: (1) The ways teachers use communicative approaches to develop discourse of inquiry in science classrooms in the process of inquiry teaching. (2) The difficulties encountered by teachers and the ways to respond during implementation.

    This research adopts action research, and the research participants are eighth-grade students in a junior high school in northern Taiwan. To research the scientific discourse of inquiry, a total of 20 lessons were designed, including wave and optics in physics. The study lasted for six weeks. During the process, I weekly analyzed the data, reflected and discussed with the co-researcher, adjusted teaching strategies, and revised the lesson plans. Findings from this study include:
    (1) Regarding teaching, the teacher's communicative approaches can be selected according to the nature of the unit, the teaching purpose of each stage of the 5E inquiry process, and the current situation; students' inquiry dialogue can be developed at an appropriate time.
    (2) Regarding students' learning, the “multiple voices, multiple ideas” communicative approach provides students with many developmental inquiry dialogues. Students develop the ability to communicate with teachers and peers from the surface to a deep level, and can also extend their exploration through “open inquiry”.
    (3) To allow students to be more engaged in exploring science, teachers should raise the level of challenges. If students have a detailed understanding of the learning tasks and goals, they will be able to deal with higher-level of challenges through inquiry dialogue and peer collaboration, gain a sense of achievement, reach the flow state, and maintain their motivation to science learning.
    (4) When the teaching is implemented, in addition to the complete design of the course, it is also necessary to consider students’ learning conditions. Students should have enough time to understand each other’s ideas and obtain higher-level and complex scientific explorations through communication. There should be room for adjustments to time and method.
    (5) Reflection can help students examine their learning conditions, and also take the opportunity to help students understand the meaning of group learning. In scientific discourse, students can help each other gain more ability to deal with higher tasks and challenges through group collaborative learning, and they can also increase their ownership of learning.

    This research also has some suggestions: For science teaching, the inquiry-based discourse enables students to discover their potential, and the learning method of scientific inquiry based on evidence can also cultivate students' scientific spirit and contribute to their career development. For researchers in related fields, first, the core concepts should be selected in the initial design, and should leave room for flexible adjustment. Second, qualitative data should be collected and analyzed at the same time, so that teaching can be continuously revised. Third, conduct long-term research on specific students to explore the development of dialogue from the students' perspectives. For teachers, let yourself follow the flow state, gradually increase the challenge and improve the ability of inquiry teaching. Do not be in a hurry, just do one thing at a time. Second, by sharing teaching stories with others, more meaningful reflection and discovery can be obtained.

    This is a bright future vision that students will be able to develop independent thinking, collaboration, to enhance students' ability to learn natural sciences and respond to scientific problems encountered in the real world.

    第一章 緒論 1  第一節 研究背景與動機 1  第二節 研究目的與待答問題 3  第三節 名詞釋義 4  第四節 研究範圍與限制 6 第二章 文獻探討 7  第一節 科學探究教學 7  第二節 探究式對話 12  第三節 能夠促進探究式對話的教學策略 19  第四節 能夠檢核科學探究式對話教學實施之研究工具 21 第三章 研究設計與實施 27  第一節 研究設計與流程 27  第二節 研究者教學經驗背景與理念 30  第三節 研究場域參與者及協同研究者 31  第四節 教學方案設計理念及內涵 32  第五節 研究工具選用說明 38  第六節 資料蒐集與分析 45  第七節 研究倫理及研究信實度 52 第四章 研究結果與討論 55  第一節 教學實施準備期 56  第二節 教學實施初期 67  第三節 教學實施中期 81  第四節 教學實施後期 104 第五章 結論與建議 121  第一節 研究結論 121  第二節 研究建議 129 參考文獻 133 附錄一 5E教學階段內容總表 137 附錄二 科學課室對話量表(DiISC)(探究與口說對話) 141 附錄三 校方研究知情書 145 附錄四 研究參與者知情同意書 147 附錄五 協同研究者參與研究同意書 149 附錄六 本研究實施單元對應108課綱之學習內容 151 附錄七 各單元教學方案與學習單 153

    中文部分
    王鑫(2013)。美國教改2061計畫。科學發展,(486),66-72。
    朱家嶠(2017)與研究相關之倫理定義。國立臺灣大學研究倫理中心。https://ethics.moe.edu.tw/files/demo/demo_u01/p02.html
    佐藤學(2019)。學習革命的願景:學習共同體的設計與實踐(黃郁倫譯:初版)。天下文化。(原著出版年:1999)
    佐藤學(2016)。教師花傳書。華東師範大學。
    佘曉清、林煥祥(2019)。PISA2015臺灣學生的表現。國立交通大學出版社。
    李佳玲(1995)。國中理化試行合作學習教學之研究[碩士論文,國立彰化師範大學]。臺灣碩博士論文加值系統。https://hdl.handle.net/11296/5wfzkd
    李咏吟(1998)。認知教學——理論與策略。心理。
    李彩鳳(2012)。5E探究教學策略下教師提問類型對促進學童科學推理能力之研究。國立臺北教育大學自然科學教育學系學位論文,1-197。
    李暉、郭重吉(2000)。科學話語與科學概念之學習:以國中生理化課學習為例。科學教育,(10),3-30。
    李驥、邱美虹(2019)。NGSS和12年國民基本教育中探究、實作和建模的比較與分析。科學教育月刊,(421),19-31。
    沈冠名(2015)。對話取向探究教學實務分享。科學教育,(04),25。
    沈冠名(2011)。國小五年級對話取向探究教學行動研究[未出版之碩士論文]。國立屏東教育大學數理教育研究所。
    吳明隆(2017)。班級經營:理論與實務(第4版)。五南。
    林天祐(2005)。教育研究倫理準則。教育研究月刊,(132),70-86。
    林佳昌、楊子瑩、王國華、林凱胤、余安順、楊秀停(2009)。資訊融入5E探究教學對八年級學生學習成效影響之研究。國民教育研究學報。
    林淑梤(2019)。探討學生科學能力與教師探究教學實務的關係。科學教育學刊,27(4),251-274。
    林淑梤、張惠博、段曉林、姜志忠、楊巽斐(2006)。一位高中物理教師對於探究取向科學演示的詮釋以及其實施的影響因素之研究。
    林煥祥、劉聖忠、林素微、李暉(2008)。臺灣參加PISA2006成果報告。行政院國家科學委員會計畫成果報告(報告編號:NSC95-2522-S-026-002)。
    洪振方(2003)。探究式教學的歷史回顧與創造性探究模式之初探。高雄師大學報,15(3),641-662。
    張素貞(2020)。「反思性對話」運用於在職教保服務人員專業成長之探究。師資培育與教師專業發展期刊,13(1),53-73。
    教育部(2014)。十二年國民基本教育課程綱要總綱。
    教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校─自然科學領域。
    許瑛玿、簡頌沛(2015)。第2章科學探究教學。載於科學探究教學,鄭榮輝、林陳涌(主編),科學實作教學理論與實務(初版,33-64)。臺灣師範大學科學教育中心。
    陳竹亭(2021)。《第三屆探究與實作年會》大會講演內容紀實探究與實作的Why,What、How。師友雙月刊,(627),7-18。
    陳均伊(2010)。教師專業成長之個案研究:一個國中自然教師探究教學觀點的轉變。教育科學研究期刊,55(2),233-264。
    陳育霖(2006)。教育現場為什麼需要探究與實作課程。科學研習月刊,55(2),19-27。
    陳桂香(2007)。實施探究教學對國二學生科學學習成效之影響[未出版之碩士論文]。國立彰化師範大學。
    陳劍涵(2018)。質性研究設計:互動取向的方法。心理。
    彭慧美(2021年8月28日)。教師如何帶領學生進行服務學習課程反思與回饋。私立大華科技大學。
    曾崇賢、段曉林、靳知勤(2011)。探究教學的專業成長歷程—以十位國中科學教師的觀點為例。科學教育學刊,19(2),143-168。
    黃松源、王美芬(2001)。國小自然科建構取向教學之行動研究。科學教育研究與發展。
    黃國珍(2021年8月28日)。2018PISA評量結果——M型化與害怕失敗的省思評鑑。https://flipedu.parenting.com.tw/article/5606
    楊建明(2010)。探究式教學法與講述式教學法在國小Scratch程式教學學習成效之研究(碩士論文)。取自台灣博碩士論文網。系統編號098NPTT5394011。
    楊榮祥(2004)。臺灣師大科學教育中心三十週年紀念我的回憶—從1960年代世界科學課程改革運動說起。科學教育月刊,(268),8-16。
    鄭志鵬(2021)。教出科學探究力。親子天下。
    Boaler, J.(2019)。幫孩子找到自信的成長型數學思維:學好數學不必靠天賦,史丹佛大學實證研究、讓孩子潛力大爆發的關鍵方法(畢馨云譯)。臉譜。(原著出版於2015年)
    Csikszentmihalyi, M.(2020)。心流(張瓊懿譯)。行路。(原著出版年:1990)
    Tileston, D.W.(2013)。所有教師都應該知道的事:學生動機(第2版)(楊昌裕譯)。心理。(原著出版年:2004)
    Whitaker, T., Breaux, A.(2021)。優秀老師這樣做:50招課堂管理術,打造高校學習環境(第2版)(林金源譯)。木馬文化。(原著出版年:2013)

    英文部分
    Alexander, R. J. (2006). Towards dialogic teaching: Rethinking classroom talk. Dialogos.
    Baker, D. R., Beard, R., Bueno-Watts, N., Lewis, E. B., Özdemir, G., Perkins, G., Wong, S., & Yaşar-Purzer, S. (2008). Discourse in Inquiry Science Classrooms (DiISC): Reference Manual. Technical Report.
    Baker, D. R., Lewis, E. B., Purzer, S., Bueno Watts, N., Perkins, G., Uysal, S., Wong, S., Beard, R., & Lang, M. (2009). The Communication in Science Inquiry Project (CISIP): A project to enhance scientific literacy through the creation of science classroom discourse communities.
    Bruner, J. S. (1960). The process of education. Harvard University.
    Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices. ERIC.
    Bybee, R. W. (2009). The BSCS 5E instructional model and 21st century skills. Colorado Springs, Co: BSCS, 24, 4-8.
    Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, Co: BSCS, 5, 88-98.
    Clark, C. M., & Peterson, P. L. (1984). Teachers' Thought Processes. Occasional Paper, 72, 8-45.
    Denzin, N. K. (2012). Triangulation 2.0. Journal of mixed methods research, 6(2), 80-88.
    Dewey, J. (1910). Science as subject-matter and as method. Science, 31(787), 121-127.
    Elliot, J. (1991). Action research for educational change. McGraw-Hill Education.
    Hackling, M. W., Smith, P., & Murcia, K. (2010). Talking Science: Developing a discourse of inquiry. Teaching Science, 56(1), 17-22.
    Haury, D. L. (1993). Teaching Science through Inquiry. ERIC/CSMEE Digest.
    Kennedy, D. (1997). Academic duty. Harvard University Press.
    Lawson, A. E. (1986). Why isn't inquiry used in more classrooms? The American Biology Teacher, 48(3), 150-158.
    Lawson, A. E., & Karplus, R. (2002). The learning cycle. In A love of discovery (pp. 51-76). Springer.
    Levy, F., & Murnane, R. J. (2004). The new division of labor: how computers change the way we work. Princeton University Press.
    Lewis, E., Baker, D., Bueno Watts, N., & Lang, M. (2014). A professional learning community activity for science teachers: How to incorporate discourse-rich instructional strategies into science lessons. Summer (2014), 23, 1, 27-35.
    Lewis, E. B., Lucas, L. L., Tankersley, A. N., Hasseler, E. F., & Helding, B. A. (2019). Measuring and Modelling How and When Effective Science Teaching Occurs. University of Nebraska - Lincoln.
    Mehan, H. (1979). Learning lesson. Harvard University Press.
    Mercer, N., & Hodgkinson, S. (2008). Exploring talk in school: Inspired by the work of Douglas Barnes. Sage.
    Mortimer, E., & Scott, P. (2003). Meaning Making In Secondary Science Classroomsaa. McGraw-Hill Education.
    Murphy, P. K. (2017). Classroom discussions in education. Routledge.
    Oliveira, A. W. (2010). Improving teacher questioning in science inquiry discussions through professional development. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 47(4), 422-453.
    Park, S., & Oliver, J. S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in science Education, 38(3), 261-284.
    Piaget, J. (1976). Piaget’s theory. In: Inhelder B., Chipman H.H., Zwingmann C. (Ed.) Piaget and His School (pp. 11-23). Springer.
    Sagor, R. (2011). The action research guidebook: A four-stage process for educators and school teams. Corwin Press.
    Scott, P. (2008). Talking a way to understanding in science classrooms. Exploring talk in school, 17-36.
    Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard educational review, 57(1), 1-23.
    Shymansky, J. (1984). BSCS programs: Just how effective were they? The American Biology Teacher, 46(1), 54-57.
    Stake, R. E., Easley, J. A., & Anastasiou, C. J. (1978). Case studies in science education (Vol. 1). Center for Instructional Research and Curriculum Evaluation, University of Illinois at Urbana-Champaign.
    Vygotsky, L. S. (1978). Socio-cultural theory. Mind in society, 6, 52-58.
    Wilson, C. D., Taylor, J. A., Kowalski, S. M., & Carlson, J. (2010). The relative effects and equity of inquiry‐based and commonplace science teaching on students' knowledge, reasoning, and argumentation. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 47(3), 276-301.

    下載圖示
    QR CODE