研究生: |
何佳樺 |
---|---|
論文名稱: |
含主族元素(硒、鍗)混合錳或鐵之金屬團簇羰機化合物:合成、反應性、物理性質及理論計算 Group 16 (Se or Te)−Containing Manganese or Iron Carbonyl Clusters: Synthesis, Reactivities, Physical Properties, and Theoretical Calculations |
指導教授: | 謝明惠 |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 405 |
中文關鍵詞: | 團簇化合物 、過渡性金屬 、主族元素 |
英文關鍵詞: | cluster, transition metal, main group element |
論文種類: | 學術論文 |
相關次數: | 點閱:90 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Te/Fe/CO 系統之研究
當[TeFe3(CO)9]2−與不同比例之[Cu(MeCN)4][BF4]反應,分別可得到聚合物[{TeFe3(CO)9Cu}−]與TeFe3(CO)9Cu2(MeCN)2。藉由加入[TeFe3(CO)9]2−,TeFe3(CO)9Cu2(MeCN)2可擴核形成[{TeFe3(CO)9Cu}−]與[{TeFe3(CO)9}3Cu3]3−。若[TeFe3(CO)9]2−與AgNO3反應則生成[{TeFe3(CO)9}3Ag3]3−與[Te2Fe8(CO)24Ag3]2−。然而,當[TeFe3(CO)9]2−與Cu(OAc)反應,可生成[{TeFe3(CO)9Cu}2(OAc)]3−。利用[TeFe3(CO)9]2−與[Cu(MeCN)4][BF4]及一系列L (L = 1,2-Bis(diphenylphosphino)ethane (dppe)、4,4'-dipyridyl (dpy)、1,2-bis(4-pyridyl)ethane (bpea)、1,2-bis(4-pyridyl)ethene (bpee))於不同比例下反應,分別得到TeFe3(CO)9Cu2(dppe)、[{TeFe3(CO)9Cu}2(L)]2−以及聚合物[{TeFe3(CO)9Cu2}(dpy)1.5]、[{TeFe3(CO)9Cu2}(bpea)]。然而若以TeFe3(CO)9Cu2(MeCN)2與一系列含N之L配基 (L = dpy、bpea、pyrazine (pyz))反應,可生成一系列L串接TeFe3Cu的聚合物([{TeFe3(CO)9Cu2}(dpy)1.5]、[{TeFe3(CO)9Cu2}(bpea)]、[{TeFe3(CO)9Cu2}(bpea)2.5]、[{TeFe3(CO)9Cu2}(pyz)• THF]與[{TeFe3(CO)9Cu2}(pyz)]。此外,化合物之生成及相關性質藉由理論計算進一步驗證。
2. Se/Mn/CO 系統之研究
利用Se8與六當量的Mn2(CO)10於4M KOH的甲醇溶液下反應,可得到49電子的化合物[Se2Mn3(CO)9]2−,並且其可進一步與[Cu(MeCN)4][BF4]反應形成48電子的化合物[Se2Mn3(CO)9]−。相反地,[Se2Mn3(CO)9]−亦可藉由加入強鹼溶液逆反應生成[Se2Mn3(CO)9]2−。然而,當[Se2Mn3(CO)9]−與Se8於KOH的甲醇溶液下反應,可得到擴核的產物[Se6Mn6(CO)18]4−,其更可進一步與Se8反應,繼續擴核形成[Se10Mn6(CO)18]4−。而[Se10Mn6(CO)18]4−亦可由[Se2Mn3(CO)9]2−與Se8反應而得。反之,當[Se10Mn6(CO)18]4−於強鹼條件下與Mn2(CO)10反應,可降解形成[Se2Mn3(CO)9]2−及[Se6Mn6(CO)18]4−。此外,當[Se6Mn6(CO)18]4−與[Cu(MeCN)4][BF4]或Mn(CO)5Br反應,可生成氧化物[Se2Mn3(CO)9]−與[Se5Mn4(CO)12]2−。然而,將[Se10Mn6(CO)18]4−與[Cu(MeCN)4][BF4]或Mn(CO)5Br反應,則可分別得到化合物[Se5Mn4(CO)12]2−及[Se4Mn3(CO)10]−。化合物之生成、擴核及相關性質藉由理論計算進一步驗證。
3. Se/Mn/CO 系統之研究
利用Se8與Mn2(CO)10於4M KOH的甲醇溶液下反應,可得到新穎的化合物[Se10Mn6(CO)18]4−與[Se6Mn6(CO)18]4−。當[Se10Mn6(CO)18]4−進一步與O2或CH2Cl2反應時,分別可得到氧化物[Se5Mn4(CO)12]2−與[Se8Mn4(CO)12(R)2]2− (R = CH2, Cl)。 [Se8Mn4(CO)12(CH2)2]2−更可進一步與Se8或H2O反應,生成Se-或O-取代的產物[Se8Mn4(CO)12(R)2]2− (R = Se, O)。然而,當[Se6Mn6(CO)18]4−與O2、Se8或CH2Cl2反應時,則分別可得到O-或Se-嵌入的產物[Se6Mn6(CO)18(O)]4−、[Se10Mn6(CO)18]4−以及[Se5Mn4(CO)12]2−。其中,化合物[Se10Mn6(CO)18]4−、[Se6Mn6(CO)18]4−、[Se6Mn6(CO)18(O)]4−與[Se8Mn4(CO)12(R)2]2− (R = CH2, Se, O)符合電子計算並具有2個未成對電子。此外,化合物之生成及相關性質藉由理論計算進一步驗證。
1. Te/Fe/CO System
When [TeFe3(CO)9]2− was treated with [Cu(MeCN)4][BF4] in various ratios, a Te─Fe─Cu chain polymer [{TeFe3(CO)9Cu}−] and a neutral cluster TeFe3(CO)9Cu2(MeCN)2 were formed, respectively. TeFe3(CO)9Cu2(MeCN)2 underwent skeleton expansion to form polymer [{TeFe3(CO)9Cu}−] and cluster [{TeFe3(CO)9}3Cu3]3−, upon treatment with [TeFe3(CO)9]2−. When [TeFe3(CO)9]2− was reacted with AgNO3, cluster [{TeFe3(CO)9}3Ag3]3− and [Te2Fe8(CO)24Ag3]2− were obtained. However, when the reaction of [TeFe3(CO)9]2− with Cu(OAc) was carried out, cluster [{TeFe3(CO)9Cu}2(OAc)]3− was formed. Further, when [TeFe3(CO)9]2− was treated with [Cu(MeCN)4][BF4] and L (L = 1,2-Bis(diphenylphosphino)ethane (dppe), 4,4'-dipyridyl (dpy), 1,2-bis(4-pyridyl)ethane (bpea), and 1,2-bis(4-pyridyl)ethene (bpee)) in various ratios, a series of novel clusters TeFe3(CO)9Cu2(dppe), [{TeFe3(CO)9Cu}2(L)]2−, and polymers [{TeFe3(CO)9Cu2}(dpy)1.5] and [{TeFe3(CO)9Cu2}(bpea)] were formed, respectively. When TeFe3(CO)9Cu2(MeCN)2 was treated with L (L = dpy, bpea, and pyrazine (pyz)), a series of L-bridged TeFe3Cu polymers, [{TeFe3(CO)9Cu2}(dpy)1.5], [{TeFe3(CO)9Cu2}(bpea)], [{TeFe3(CO)9Cu2}(bpea)2.5], [{TeFe3(CO)9Cu2}(pyz)• THF], and [{TeFe3(CO)9Cu2}(pyz)] were constructed. Furthermore, the nature, formation, and physical property of the resultant clusters are discussed and elucidated on the basis of DFT calculations.
2. Se/Mn/CO System
The reaction of Se8 with 6 equiv of Mn2(CO)10 in concentrated KOH/MeOH solutions lead to the formation of cluster [Se2Mn3(CO)9]2−, which could be further reacted with [Cu(MeCN)4][BF4] to give [Se2Mn3(CO)9]−. [Se2Mn3(CO)9]− could also be reconverted to [Se2Mn3(CO)9]2− by the addition of KOH/MeOH solutions in MeCN. When [Se2Mn3(CO)9]− was treated with Se8 in a concentrated KOH/MeOH solution, a large cluster [Se6Mn6(CO)18]4− was produced, which could be further reacted with Se8 to give a larger cluster [Se10Mn6(CO)18]4−. [Se10Mn6(CO)18]4− could also be obtained from the reaction of [Se2Mn3(CO)9]2− with Se8. Conversely, [Se10Mn6(CO)18]4− could be reconverted to [Se2Mn3(CO)9]2− and [Se6Mn6(CO)18]4− by the addition of Mn2(CO)10 in a concentrated KOH/MeOH solution. Moreover, when [Se6Mn6(CO)18]4− was treated with [Cu(MeCN)4][BF4] or Mn(CO)5Br, clusters [Se2Mn3(CO)9]− and [Se5Mn4(CO)12]2− were produced. When [Se10Mn6(CO)18]4− was treated with [Cu(MeCN)4][BF4] or Mn(CO)5Br, clusters [Se5Mn4(CO)12]2− and [Se4Mn3(CO)10]− were formed. Furthermore, the nature, the cluster transformation, and electrochemical property of these resultant clusters are discussed and elucidated by DFT calculations.
3. Se/Mn/CO System
When Se8 was treated with Mn2(CO)10 in concentrated KOH/MeOH solutions, the novel hexamanganese clusters [Se10Mn6(CO)18]4− and [Se6Mn6(CO)18]4− were produced. When [Se10Mn6(CO)18]4− was reacted with O2 or CH2Cl2, cluster [Se5Mn4(CO)12]2− and [Se8Mn4(CO)12(R)2]2− (R = CH2, Cl) were formed, respectively. [Se8Mn4(CO)12(CH2)2]2− exhibited interesting reactivity toward Se8 and H2O to give the Se- and O-substituted clusters [Se8Mn4(CO)12(R)2]2− (R = Se, O), respectively. Interestingly, [Se6Mn6(CO)18]4− demonstrated contrasting reactivity toward O2, Se8, and CH2Cl2 to afford the O- and Se-inserted clusters [Se6Mn6(CO)18(O)]4−, [Se10Mn6(CO)18]4−, and [Se5Mn4(CO)12]2−, respectively. Clusters [Se10Mn6(CO)18]4−, [Se6Mn6(CO)18]4−, [Se6Mn6(CO)18(O)]4−, and [Se8Mn4(CO)12(R)2]2− (R = CH2, Se, O) were electron-precise species but found to possess unusual paramagnetic behaviors. The formation, reactivity, and magnetic property are investigated and elucidated by DFT calculations.
(1) (a) Comprehensive Supramolecular Chemistry; Lehn, J.-M., Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vögtle, F., Eds.; Pergamon: Oxford, 1996. (b) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853. (c) Glasson, C. R. K.; Lindoy, L. F.; Meehan, G. V. Coord. Chem. Rev. 2008, 252, 940. (d) Alexeeva, Yu. E.; Kharisovb, B. I.; Hernández Garcíab, T. C.; Garnovskiia, A. D. Coord. Chem. Rev. 2010, 254, 794. (e) Peng, R.; Li, M.; Li, D. Coord. Chem. Rev. 2010, 254, 1.
(2) (a) Claridge, S. A.; Castleman, Jr., A. W.; Khanna, S. N.; Murray, C. B.; Sen, A.; Weiss, P. S. ACS Nano 2009, 3, 244. (b) Tadokoro, M.; Yasuzuka, S.; Nakamura, M.; Shinoda, T.; Tatenuma, T.; Mitsumi, M.; Ozawa, Y.; Toriumi, K.; Yoshino, H.; Shiomi, D.; Sato, K.; Takui, T.; Mori, T.; Murata, K. Angew. Chem., Int. Ed. 2006, 45, 5144. (c) Yu, R.; Kuang, X.-F.; Wu, X.-Y.; Lu, C.-Z.; Donahue, J. P. Coord. Chem. Rev. 2009, 253, 2872. (d) Zang, L.; Che, Y.; Moore, J. S. Acc. Chem. Res. 2008, 41, 1596. (e) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127. (f) Friese, V. A.; Kurth, D. G. Coord. Chem. Rev. 2008, 252, 199. (g) Kahn, O. Acc. Chem. Res. 2000, 33, 647. (h) Robin, A. Y.; Fromm, K. M. Coord. Chem. Rev. 2006, 250, 2127.
(3) (a) Bai, J.; Virovets, A. V.; Scheer, M. Science 2003, 300, 781. (b) Bai, J.; Virovets, A. V.; Scheer, M. Angew. Chem., Int. Ed. 2002, 41, 1737. (c) Lang, J.-P.; Xu, Q.-F.; Yuan, R.-X.; Abrahams, B. F. Angew. Chem., Int. Ed. 2004, 43, 4741.
(4) Stamatatos, T. C.; Teat, S. J.; Wernsdorfer, W.; Christou, G. Angew. Chem., Int. Ed. 2009, 48, 521.
(5) (a) Adams, R. D.; Captain, B. Acc. Chem. Res. 2009, 42, 409. (b) Adams, R. D.; Captain, B. Angew. Chem., Int. Ed. 2008, 47, 252. (c) Borovik, A. S. Acc. Chem. Res. 2005, 38, 54.