簡易檢索 / 詳目顯示

研究生: 黃卉珍
論文名稱: 探討雙重鷹架在多重表徵的動態幾何環境中對解題過程之影響-以二元一次方程式為例
The Effects of Double Scaffolding on Problem Solving with Multiple Representations in a Dynamic Geometry Environment - Linear Equations with Two Variables
指導教授: 吳心楷
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 123
中文關鍵詞: 解題過程雙重鷹架多重表徵動態幾何環境
英文關鍵詞: problem-solving process, double scaffolding, multiple representations, dynamic geometry environment
論文種類: 學術論文
相關次數: 點閱:231下載:35
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   培養學生具備問題解決的能力,是學習數學的主要目的。透過多重表徵的使用,除了能幫助學生理解概念,更能進一步協助問題解決的過程。故本研究先利用學習單作為學生理解多重表徵的鷹架,再使用多重表徵以作為問題解決的鷹架,進而分析不同數位教材與學習單的使用下,不同先備知識學生的學習表現與解題過程之差異。其中表徵方式分為常用表徵(方程式、靜態圖形、數對)與附加表徵(常用表徵、表格、動態圖形);而學習單分為一般型(概念理解、情境問題解決)與轉譯型(概念理解、表徵轉譯、情境問題解決)。
      本研究以「二元一次方程式」單元進行設計,並利用GeoGebra動態幾何軟體進行教學,以探討113位八年級學生於教學過程中,透過不同表徵多樣性與學習單的使用,不同先備知識學生在概念理解、表徵轉譯、問題解決的學習表現。並挑選24位學生進行教學後晤談,以了解不同表徵多樣性與學習單的使用對於學生解題過程之影響。資料收集與分析主要為表現測驗(前、後測)與半結構式晤談。
      研究結果顯示,在學習單與先備知識交互作用下,使用轉譯型學習單的學生在表徵轉譯與問題解決的學習成效上,達到鷹架的目的,其中以高先備知識學生的學習成效最為明顯;對於低先備知識學生,其學習成效則無明顯差異。在表徵多樣性與先備知識交互作用下,雖然對於學生在問題解決的表現有所不同,但未有明顯差異,因此附加表徵似乎未能達到鷹架的目的。對照量化與晤談結果發現,不同學習單對於表徵轉譯與問題解決有不一樣成效,其中轉譯型學習單可能對於理解問題、分析目標、發展計畫等三個階段比較有效果,而表徵多樣性對於問題解決沒有明顯成效。此外,對於學生整體的解題表現,轉譯型學習單則是搭配常用表徵進行教學下較有效果。

      The purpose of this study is to investigate how the use of worksheets and multiple representations scaffold students’ learning about linear equations in two variables and to understand whether students’ prior knowledge interacts with the use of designed worksheets and multiple representations. Two types of worksheets were used: General type (including conceptual understanding and situational problem-solving items) and Translation type (including the items in the general type and the translation of representations). Also, two sets of multiple representations created by GeoGebra software were developed: Common representations (including equations, static graphics, and ordered pairs) and Additional representaions (including the common representations, tables, and dynamic graphics).
      A 2x2 factorial research design was employed with the participation of 113 eighth-grade students divided into 4 groups. To learn the topic, each group received instruction by using one type of the worksheets with either common representations or additional representations. Their performances in problem solving, conceptual learning, and representation translation were examined by the pretest and posttest. After the instruction, 24 students with different levels of prior knowledge were interviewed in order to understand their problem-solving process. According to the three-way ANCOVA analysis, the translation worksheets can scaffold high prior knowledge students’ learning performances in problem solving and representation translation, but the effect of different sets of multiple representations were not found. Additionally, the analysis of the interviews showed that students who used the translation worksheets tended to perform better on problem comprehension, goal analysis, and plan development. The findings suggested that the translation worksheets could better support students’ learning performances when they were used with common representations.

    第一章 緒論 1 第一節 研究動機與背景 1 第二節 研究目的與問題 2 第三節 研究重要性 2 第四節 名詞釋義 3 第五節 研究限制 4 第二章 文獻探討 5 第一節 二元一次方程式的概念學習與教學之相關研究 5 第二節 表徵與多重表徵 7 第三節 動態幾何環境 15 第四節 解題過程 19 第五節 鷹架理論與學習 28 第三章 研究方法 37 第一節 研究流程 37 第二節 研究架構與設計 38 第三節 教學設計 39 第四節 研究對象 45 第五節 資料來源與收集 46 第六節 資料分析 50 第四章 研究結果 57 第一節 表徵多樣性、學習單與先備知識對概念理解之影響 57 第二節 表徵多樣性、學習單與先備知識對表徵轉譯之影響 60 第三節 表徵多樣性、學習單與先備知識對問題解決之影響 64 第四節 晤談分析 71 第五章 結論與討論 85 第一節 結論 85 第二節 討論 85 第三節 建議 88 參考文獻 91 附錄 99

    一、 中文部份
    丁斌悅(2002)。國二學生學習線型函數時的概念表徵發展研究。國立台灣師範大學數學研究所碩士論文,未出版,台北市。
    戴文賓(1999)。國一學生由算術領域轉入代數領域呈現的學習現象與特徵。國立彰化師範大學科學教育研究所,未出版,彰化市。
    林星秀(2001)。高雄市國二函數課程GSP輔助教學成效之研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
    林郁芬(2010)。空間能力、先備知識與表徵順序對七年級概念理解之影響:以人體呼吸運動單元為例。國立臺灣師範大學科學教育研究所,未出版,台北市。
    李德正(2011)。課後學習單對五年級數學「怎樣解題」單元學習成效之探討。國立台南大學應用數學研究所碩士論文,未出版,台南市。
    凌久原(2007)。動態多重表徵對於國中生幾何單元學習成效之影響。國立成功大學教育研究所碩士論文,未出版,台南市。
    羅驥韡、許舜淵、彭建勛、呂鳳琳、胡政德、左台益(譯)(2009)。M. Hohenwarter 與J. Hohenwarter著。GeoGebra版本3.2使用說明(Introduction to GeoGebra 3.2)。2012年1月2日,取自:http:// www.geogebra.org。
    教育部(2003)。國民中小學九年一貫課程綱要-數學學習領域。台北:教育部。
    謝孟珊(2000)。以不同符號表徵未知數對國二學生解方程式表現之探討。國立臺北教育大學數理教育研究所碩士論文,未出版,台北市。
    何政謀(2004)。以GSP設計之活動進行解二元一次聯立方程式補救教學之研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
    胡惠茹(2008)。不同二次函數表徵問題對國三學生解題影響之探究。國立台南教育大學數學教育研究所碩士論文,未出版,台南市。
    黃芳玉(2003)。國小六年級學生數學表徵能力與計算能力之研究。國立嘉義大學數學教育研究所,未出版,嘉義市。
    簡錦鳳(2008)。文字鷹架對七年級學生科學解釋能力的影響。國立臺灣師範大學科學教育研究所,未出版,台北市。
    周雅芬(2006)。探究學習環與鷹架輔助學習單對八年級學生線上探究行為之影響。國立臺灣師範大學科學教育研究所,未出版,台北市。
    張景媛(1994)。國中生數學學習歷程統整模式之研究。教育心理學報,27,141-174。
    張菁珊(2004)。台北市國中學生函數概念學習之狀況。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
    張國樑(2004)。國中生代數文字題之解題歷程分析研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
    陳定邦(2003)。鷹架教學概念在成人學習歷程上應用之研究。國立台灣師範大學社會教育學研究所博士論文,未出版,台北市。
    陳哲仁(2004)。九年一貫國二學生解一元二次方程式應用問題歷程之分析研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
    陳建廷(2007)。國一學生一元一次方程解題歷程之研究。國立中山大學教育研究所碩士論文,未出版,高雄市。
    陳霈頡與楊德清(2005)。數學表徵應用在教學上的探究。科學教育研究與發展季刊,40,48-61。
    左台益與蔡志仁(2001)。高中生建構橢圓多重表徵之認知特性。科學教育學刊,9(3),281-297。
    曾江淮(2009)。探究教學對八年級學生概念改變之研究-以線型函數單元為例。國立彰化師範大學科學教育研究所,未出版,彰化市。
    蔡奇霖(2008)。行動載具應用於數學橢圓單元之教學成效。國立台灣師範大學資訊教育研究所碩士論文,未出版,台北市。
    蔡志仁(1999)。動態連結多重表徵視窗環境下橢圓學習之研究。國立台灣師範大學數學研究所碩士論文,未出版,台北市。
    蔡佳霏(2012)。利用教師鷹架與同儕鷹架促進二年級學生數學解題能力之研究。國立屏東教育大學數理教育研究所碩士論文,未出版,屏東市。
    尤冠龍(2006)。幾何繪圖軟體GSP融入國中數學教學對學生學習成就與態度影響之研究。國立彰化師範大學科學教育研究所,未出版,彰化市。
    余酈惠(2003)。高雄市高職學生運用GSP軟體學習三角函數成效之研究。國立高雄師範大學數學研究所碩士論文,未出版,高雄市。
    蘇衍丞(2010)。應用鷹架式論證教學提升國小高年級學生之論證能力。國立嘉義大學科學教育研究所,未出版,嘉義市。

    二、 西文部份
    Ainsworth S. (1999). The functions of multiple representations. Computers and Education, 33, 131-152.
    Ainsworth S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183-198.
    Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practices in Cabri environments. ZDM, 43(3), 66-72.
    Baron, R. M. & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173-1182.
    Bruner, J. S. (1965). Toward a theory of instruction. MA: Harvard University.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: LEA.
    Davis, E. A. & Miyake, N. (2004). Explorations of scaffolding in complex classroom systems. The Journal of The learning sciences, 13(3), 265-272.
    Dewey, J. (1910). How we think. Buffalo, NY: Prometheus Books.
    Even, R. (1990). Subject matter knowledge for teaching and the case of functions. Educational Studies in Mathematics, 21(6), 521-544.
    Herscovics, N. (1979). A learning model for some algebraic concepts. In K. C. Fuson & W. E. Geeslin (Eds.), Explorations in the modeling of the learning of mathematics (pp. 98-116). Columbus, Ohio: ERIC/SMEEC.
    Hayes, J. R. (1989). The complete problem solver. Hillsdale, NJ: LEA.
    Heddens, J. W. & Speer, W. R. (1995). Today's mathematics. Englewood Cliffs, NJ: Merrill.
    Hines, E. (2002). Developing the concept of linear function: One student’s experiences with dynamic physical models. Journal of Mathematics Behavior, 20, 337-361.
    Hölzl, R. (1996). How does ‘dragging’ affect the learning of geometry. International Journal of Computers for Mathematical Learning, 1, 169-187.
    Janvier, C. (1987a). Translation processes in mathematics education. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 27-32). Hillsdale, NJ: Erlbaum.
    Janvier , C. (1987b). Representation and understanding: The notion of function as an example. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 67-71). Hillsdale, NJ: LEA.
    Janvier, C., Girardon, C., & Morand, J. C. (1993). Mathematical symbols and representations. In P. S. Wilson (Ed.), High school mathematics (pp. 79-102). NY: Macmillan.
    Jones, M. G. & Carter, G. (1998). Small groups and shared constructions. In J. J. Mintzes , J. H. Wandersee, and J. D. Novak (Eds.), Teaching science for understanding: A human constructivist view (pp. 261-279). San Diego: Academic Press.
    Kaput, J. J. (1985). Representation and problem solving: Methodological issues related to modeling. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 381-398). Hillsdale, NJ: LEA.
    Kaput, J. J. (1987). Representation and mathematics. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 19-26). Hillsdale, NJ: Erlbaum.
    Lesh, R. (1979). Mathematical learning disabilities: Considerations for identification, diagnosis, remediation. In R. Lesh, D. Mierkiewicz, & M. Kantowski (Eds.), Applied mathematical problem solving (pp. 111-180). Columbus, Ohio: ERIC/SMEAC.
    Lester, F. K. (1980). Problem solving: Is it a problem? In M. M. Lindquist (Ed.), Selected issues in mathematics education (pp. 29-45). Berkeley, CA: McCutchan.
    Lesh, R., Post, T., & Behr, M. (1987a). Representations and translations among representations in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 33-40). Hillsdale, NJ: Erlbaum.
    Lesh, R., Post, T., & Behr, M. (1987b). Representations and translations among representations in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 41-58). Hillsdale, NJ: Erlbaum.
    Markovits, Z., Eylon, B. S., & Bruckheimer, M. (1986). Functions today and yesterday. For the Learning of Mathematics, 6(2), 18-24.
    Markovits, Z., Eylon, B. S., & Bruckheimer, M. (1988). Difficulties students have with the function concept. In A. F. Coxford (Ed.), The ideas of algebra, K-12: 1988 yearbook (pp. 43-60). Reston, VA: NCTM.
    Mayer, R. E. (1992). Thinking, problem solving, cognition. NY: W.H. Freeman.
    McArthur, D., Stasz, C., & Zmuidzinas, M. (1990). Tutoring techniques in algebra. Cognition and Instruction, 7(3), 197-244.
    McLoughlin, C. (2002). Learner support in distance and networked learning environments: Ten dimensions for successful design. Distance Education, 23(2), 149-162.
    National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
    Polya, G. (1957). How to solve it: A new aspect of mathematical method. Princeton, NJ: Princeton University Press.
    Post, T. R. (1980). The role of manipulative materials in the learning of mathematical concepts. In M. M. Lindquist (Ed.), Selected issues in mathematics education (pp. 109-131). Berkeley, CA: McCutchan.
    Puntambekar, S. & Kolodner, J. L. (1998). Distributed scaffolding: Helping students learn in a ‘learning by design’ environment. In A. S. Bruckman, M. Guzidial, J. L. Kolodner, & A. Ram (Eds.), Proceedings of the third international conference of the learning sciences (pp. 35-41). Charlottesville, VA: AACE.
    Puntambekar, S. & Hübscher, R. (2005). Tools for scaffolding students in a complex learning environment: What have we gained and what have we missed? Educational Psychologist, 40(1), 1-12.
    Puntambekar, S. & Kolodner, J. L. (2005). Toward implementing distributed scaffolding: Helping students learn science from design. Journal of Research in Science Teaching, 42(2), 185-217.
    Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., et al. (2004). A Scaffolding Design Framework for Software to Support Science Inquire. Journal of the Learning Sciences, 13(3), 337-386.
    Roehler, L. R., & Cantlon, D. J. (1997). Scaffolding: A powerful tool in social constructivist classrooms. In K. Hogan & M. Pressley (Eds.), Scaffolding student learning: Instructional approaches and issues (pp. 6-42). Cambridge, MA: Brookline.
    Rahim, M. H. (2002, January). A classroom use of the Geometer's Sketchpad in a mathematics pre-service teacher education program. Paper presented at the proceedings of the International Conference on "Mathematics for Living", Amman, Jordan.
    Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, Fla: Academic Press.
    Tabak, I. (2004). Synergy: A complement to emerging patterns of distributed scaffolding. Journal of the Learning Sciences, 13(3), 305-335.
    Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.
    Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89-100.
    Wilson, J. W., Fernandez, M. L., & Hadaway, N. (1993). Matematical problem solving. In P. S. Wilson (Ed.), High school mathematics (pp. 79-102). NY: Macmillan.
    Zaslavsky, O. (1997). Conceptual obstacles in the learning of quadratic functions. Focus on Learning Problems in Mathematics, 19(1), 20-44.

    下載圖示
    QR CODE