研究生: |
李涵榮 Li, Han-Jung |
---|---|
論文名稱: |
二氧化碳氫化反應、Fischer-Tropsch 合成反應在M(111) (M = Fe、W) 表面之理論計算研究 Density-Functional Theory Calculation of CO2 Hydrogenation and Fischer-Tropsch Synthesis over a M(111) (M = Fe、W) Surface |
指導教授: |
何嘉仁
Ho, Jia-Jen |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 173 |
中文關鍵詞: | 二氧化碳 、氫化 、鐵 、鎢 、Fischer-Tropsch 、密度泛函理論 |
英文關鍵詞: | Carbon Dioxide, Hydrogenation, Fe(111), W(111), Fischer-Tropsch, Density-functional theory |
論文種類: | 學術論文 |
相關次數: | 點閱:252 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
第一部分 : 二氧化碳在Fe(111) 及W(111) 表面氫化反應探討
我們使用密度泛函理論來研究二氧化碳在Fe(111)及W(111) 表面的氫化反應,包括: 產物的結構、吸附能並計算氫化反應之位能圖。計算結果顯示,在Fe(111) 及W(111) 表面,二氧化碳的氫化反應有很相似的路徑,但在能量上卻有很大的不同。在Fe(111)表面,氫化產生Formate (HCOO) 和Carboxyl (COOH) 的反應能障分別為0.72 和1.75 eV,在W(111)表面則為0.79 和 2.91 eV。兩者都傾向生成Formate (HCOO-vertical) 產物。而Formate後續的氫化反應,結果顯示在Fe 及W表面都不傾向產生甲酸,而若要產生甲醇,則速率決定步驟在兩表面皆為最後一個氫化步驟,CH3O + H → CH3OH,反應能障分別為1.71 eV(Fe) 和2.18 eV(W)。為了瞭解吸附物和表面的交互作用,我們也提出電子結構等相關資訊輔以討論。
第二部分 : Fischer-Tropsch合成反應在Fe(111) 及W(111) 表面可能的反應機構探討
我們使用密度泛函理論來研究Fischer-Tropsch合成反應在Fe(111)及W(111) 表面可能的反應機制,其中包括CO的活化反應、CHx (x = 0~3) 的氫化反應及C-C單體結合反應。結果顯示不論在Fe(111)或W(111)表面,CO並不會直接斷C-O鍵,反而傾向先和表面的H原子進行氫化反應,生成中間物CHO,接著才解離C-O鍵。 CHx (x = 0~3)的選擇性,在Fe(111) 及W(111)表面,皆以CH佔大多數。最後,在Fe(111)表面,C-C 單體結合反應,傾向以CH + CH的方式進行,反應能障為0.54 eV。而在W(111)表面則可能以CO + CH 或CH + CH方式進行,能障分別為0.26 eV 和0.35 eV。為了瞭解吸附物和表面的交互作用,我們也提出電子結構等相關資訊輔以討論。
Abstract
1st part: Density-Functional Calculations on the Hydrogenation of Carbon Dioxide on Fe(111) and W(111) Surfaces
With quantum-chemical calculations we investigated the hydrogenation of a CO2 molecule on Fe(111) and W(111) surfaces using the density functional theory (DFT) with the projector-augmented wave (PAW) approach in periodic boundary condition. The structures and geometric parameters of the hydrogenation products, and the potential-energy surfaces (PESs), were calculated. It was shown that the similar reaction paths for the hydrogenation of CO2 on Fe(111) and W(111) surfaces were found but with disparate reaction energy barriers. The barriers from M-CO2 (M = Fe, W) plus H atom to form formate (HCOO) and carboxyl (COOH) on a Fe(111) surface are 0.72 and 1.75 eV, respectively, but 0.79 and 2.91 eV, respectively, on a W(111) surface. The most probable path for the hydrogenation of a CO2 molecule on either the Fe(111) or the W(111) surface is the formation of a formate-vertical structure. To understand the interaction between adsorbates and surfaces, we calculated the Bader charges and analyzed the local densities of states (DOS).
2nd part: Density Functional Calculations to Study the Mechanism of Fischer-Tropch Reaction on Fe(111) and W(111) Surfaces
Density-functional theory calculation is employed to study the Fischer-Tropsch synthesis on Fe(111) and W(111) surfaces, which contains the mechanism investigations of CO activation, hydrogenation of CHx (x = 0~3) species, and C-C coupling processes. It shows that CO prefers to form the HCO intermediate before C-O bond scission rather than direct dissociation of its C-O bond on both Fe(111) and W(111) surfaces. In addition, the CH will be the most abundant adsorbing species on these two surfaces, which would induce the coupling reaction of CH + CH to be the most probable processes on the Fe(111) surface with a calculated barrier of 0.54 eV; while it might induce two favorable coupling reactions: CO + CH and CH + CH on the W(111) surface with the calculated reaction barriers of 0.26 and 0.35 eV, respectively. To understand the interaction between adsorbates and surfaces, we calculated the Bader charges and analyzed the density of states.
參考文獻(1):
(1)Lackner, K. S. Science 2003, 300, 1677.
(2)Song, C. Catal. Today 2006, 115, 2.
(3)Sakakura, T.; Choi, J. C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.
(4)Naffel, A.; Moor, E.; Oeschger, H.; Straufer, B. Nature 1985, 315, 45.
(5)Friedli, H.; Lötscher, H.; Oescher, H.; Slegenthaler, U.; Straufer, B. Nature 1986, 342, 237.
(6)Kuśmierz, M. Catal. Today 2008, 137, 429.
(7)Tihay, F.; Roger, A. C.; Pourroy, G.; Kiennemann, A. Energy Fuels 2002, 16, 1271.
(8)Ando, H.; Xu, Q.; Fujiwara, M.; Matsumura, Y; Tanaka, M.; Souma, Y. Catal. Today 1998, 45, 229.
(9)Hess, G.; Baumgartner, Ch.; Petkova, A.; Froitzheim, H. Surf. Sci. 2004, 572, 355.
(10)Hess, G.; Baumgartner, Ch.; Froitzheim, H. Phys. Rev. B 2001, 63, 165416.
(11)Glezakou, V.-A.; Dang, L. X.; McGrail, B.P. J. Phys. Chem. C 2009, 113, 3691.
(12)Solymosi, F.; Klivenyi, G. Surf. Sci. 1994, 315, 255.
(13)Choe, S. J.; Park, D. H.; Huh, D. S. Bull. Korean Chem. Soc. 2000, 21, 779.
(14)Liu, Z. M.; Zhou, Y.; Solymosi, F.; White, J. M. J. Phys. Chem. 1989, 93, 4383.
(15)Berkó, A.; Solymosi, F. Surf. Sci. 1986, 171, 498.
(16)Rodriguez, J. A.; Clendening, W. D.; Campbell, C. T. J. Phys. Chem. 1989, 93, 5238.
(17)Stuve, E. M.; Madix, R. J.; Sexton, B. A. Chem. Phys. Lett. 1982, 89, 48.
(18)Farkas, A. P.; Solymosi, F. J. Phys. Chem. C 2009, 113, 19930.
(19)Senanayake, S. D.; Stacchiola, D.; Liu, P.; Mullins, C. B.; Hrbek. J.; Rodriguez, J. A. J. Phys. Chem. C 2009, 133, 19536.
(20)Yan, T.; Wang, S.; Zhou, Y.; Cao, Z.; Li, G. J. Phys. Chem. C 2009, 113, 19389.
(21)Nordhei, C.; Mathisen, K.; Safonova, O.; Beek, van W.; Nicholson, D. G. J. Phys. Chem. C 2009, 113, 19568.
(22)Li, Z.; Zhong, J.; Levin, D. A. J. Phys. Chem. C 2010, 114, 5276.
(23)Vesselli, E.; De Rogatis, L.; Ding, X.; Baraldi, A.; Savio, L.; Vattuone, L.; Rocca, M.; Fornasiero, P.; Peressi, M.; Baldereschi, A.; Rosei, R.; Comelli, G. J. Am. Chem. Soc. 2008, 130, 11417.
(24)Gokhale, A. A.; Dumesic, J. A.; Marvrikakis, M. J. Am. Chem. Soc. 2008, 130, 1402.
(25)Grabow, L. C.; Gokhale, A. A.; Evans, S. T.; Dumesic, J. A.; Marvrikakis, M. J. Phys. Chem. C 2008, 112, 4608.
(26)Hess, G.; Froitzheim, H.; Baumgartner, Ch. Surf. Sci. 1995, 331, 138.
(27)Chen, H.-L.; Chen, H.-T.; Ho, J.-J. Langmuir 2010, 26, 775.
(28)Chen, H.-T.; Musaev, D. G.; Lin, M. C. J. Phys. Chem. C 2008, 112, 3341.
(29)Lee, S.-C.; Jang, J.-H.; Lee, B.-Y.; Kang, M.-C.; Kang, M.; Choung, S.-J. Appl. Catal. A-Gen. 2003, 253, 293.
(30)Riedel, T.; Schaub, G.; Jun, K.-W.; Lee, K.-W. Ind. Eng. Chem. Res. 2001, 40, 1355.
(31)Yan, S.-R.; Jun, K.-W.; Hong, J.-S.; Choi, M.-J.; Lee, K.-W. Appl. Catal. A-Gen. 2000, 194, 63.
(32)Liang, X.-L.; Dong, X.; Lin, G.-D.; Zhang, H.-B. Appl. Catal. B-Environ. 2009, 88, 315.
(33)Tominaga, H.; Nagai, M. Appl. Catal. A-Gen. 2005, 282, 5.
(34)Takeda, H.; Koike, K.; Inoue, H.; Ishitani, O. J. Am. Chem. Soc. 2008, 130, 2023.
(35)Hicks, J. C.; Drese, J. H.; Fauth, D. J.; Gray, M. L.; Qi, G.; Jones, C. W. J. Am. Chem. Soc. 2008, 130, 2902.
(36)Mebel, A. M.; Hwang, D.-Y. J. Phys. Chem. A 2000, 104, 11622.
(37)Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
(38)Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.
(39)Kresse, G.; Furthmuller, J. Comp. Mater. Sci. 1996, 6, 15.
(40)Kresse, G.; Hafner, J. Phys. Rev. B 1996, 54, 11169.
(41)Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
(42)Zhang, Y.; Yang, W. Phys. Rev. Lett. 1998, 80, 890.
(43)Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.
(44)Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
(45)Kittel, C. Introduction to Solid State Physics, 7th ed.; John Wiley & Sons: Now York, 1996.
(46)Villars, P.; Calvert, L. D. Pearson’s Handbook of Crystallographic Data for Intermetallic Phase, 2nd ed.; ASM International: Materials Park, Ohio 1991.
(47)Huo, C.-F.; Li, Y.-W.; Wang, J.; Jiao, H. J. Phys. Chem. B 2005, 109, 14160.
(48)Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
(49)Ulitsky, A.; Elber, R. J. Chem. Phys. 1990, 92, 1510.
(50)Mills, G.; Jónsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305.
(51)Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901.
(52)(a) Herzberg, G. Electronic spectra and electronic structure of polyatomic molecules; Van Nostrand: New York, 1966. (b) Person,W. B.; Zerbi, G. Vibrational Intensities in Infrared and Raman Spectroscopy; Elsevier Scientific Pub. Co.: Amsterdam, 1982.
(53)Bader, R. F. W.; Beddall, P. M. J. Chem. Phys. 1972, 56, 3320.
(54)Bader, R. F. W. Atoms in Molecules-A Quantum Theory; Oxford University Press: Oxford, UK, 1990.
(55)Henkelman, G.; Arnaldsson, A.; Jónsson, H. Comp. Mater. Sci. 2006, 36, 354.
(56)Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. J. Comp. Chem. 2007, 28, 899.
(57)Tang, W.; Sanville, E.; Henkelman, G. J. Phys.: Condens. Matter 2009, 21, 084204.
參考文獻(2):
(1)Maitlis, P. M. J. Mol. Catal., A: Chem. 2003, 55, 204.
(2)Long, H. C.; Turner, M. L.; Fornasiero, P.; Kasˇpar, J.; Graziani, M.; Maitlis, P. M. J. Catal. 1997, 167, 172.
(3)Turner, M. L.; Byers, P. K.; Long, H. C.; Maitlis, P. M. J. Am.Chem. Soc. 1993, 115, 4417.
(4)Krishna, K. R.; Bell, A. T. J. Catal. 1993, 139, 104.
(5)Komaya, T.; Bell, A. T. J. Catal. 1994, 146, 237.
(6)Ndlovu, S. B.; Phala, N. S.; Hearshaw-Timme, M.; Beagly, P.; Moss, J. R.; Claeys, M.; van Steen, E. Catal. Today 2002, 71, 343.
(7)Gong, X.-Q.; Raval, R.; Hu, P. Mol. Phys. 2004, 102, 993.
(8)Gong, X.-Q.; Raval, R.; Hu, P. Surf. Sci. 2004, 562, 247.
(9)Maitlis, P. M.; Quyoum, R.; Long, H. C.; Turner, M. L. Appl. Catal., A 1999, 186, 363.
(10)Dictor, R. A.; Bell, A. T. J. Catal. 1986, 97, 121.
(11)Tuner, M. L.; Marsih, N.; Man, B. E.; Quyoum, R.; Long, H. C.; Maitlis, P. M. J. Am. Chem. Soc. 2002, 124, 10456.
(12)Ekerdt, J. G.; Bell, A. T. J. Catal. 1980, 62, 19.
(13)Rofer-Depoorter, C. K. Chem. Rev. 1981, 81, 447.
(14)Geerlings, J. J. C.; Wilson, J. H.; Krammer, G. J.; Kuipers, H. P. C. E.; Hoek, A.; Huisman, H. M. Appl. Catal., A 1999, 186, 27.
(15)Dry, M. E. Catal. Today 2002, 71, 227.
(16)Dry, M. E. Appl. Catal., A 1996, 138, 319.
(17)Biloen, P.; Sachtler, W. M. H. Adv. Catal. 1981, 30, 165.
(18)Iglesia, E. Appl. Catal., A 1997, 161, 59.
(19)Schulz, H. Appl. Catal., A 1999, 186, 3.
(20)Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C. M. J. Phys. Chem. C 2008, 112, 6082.
(21)Shetty, S.; Jansen, A. P. J.; Santan, van R. A. J. Am. Chem. Soc. 2009, 131, 12874.
(22)Inderwildi, O. R.; Jenkins, S. J.; King, D. A. J. Phys. Chem. C 2008, 112, 1305.
(23)Ojeda, M.; Nabar, R.; Nilekar, A. U.; Ishikawa, A.; Mavrikakis, M.; Iglesia, E. J. Catal. 2010, 272, 287.
(24)Shetty, S.; Santan, van R. A. Phys. Chem. Chem. Phys. 2010, 12, 6330.
(25)Gong, X.-Q.; Raval, R.; Hu, P. J. Chem. Phys. 2005, 122, 024711.
(26)Fischer, F.; Tropsch, H. Brennstoff Chem. 1923, 4, 276.
(27)Pichler, H.; Schulz, H. Chem. Eng. Technol. 1970, 12, 1160.
(28)(a) Scorch, H. H.; Goulombic, N.; Anderson, R. B. The Fischer-Tropsch and Related Syntheses; Wiley: New York, 1951. (b) Kummer, J. F.; Emmett, P. H. J. Am. Chem. Soc. 1953, 75, 5177.
(29)Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C. M. J. Phys. Chem. C 2009, 113, 8858.
(30)Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C. M. Top Catal. 2010, 53, 326.
(31)Pour, A. N.; Housaindokht, M. R.; Tayyari, A. F.; Zarkesh, J. J. Nat. Gas Chem. 2010, 19, 284.
(32)Chen, H.-T.; Musaev, D. G.; Lin, M. C. J. Phys. Chem. C 2008, 112, 3341.
(33)Inderwildi, O. R.; Jenkins, S. J.; King, D. A. J. Phys. Chem. C 2008, 112, 1305.
(34)Andersson, M.P.; Abild-Pedersen, F.; Remediakis, I. N.; Bligaard, T.; Jones, G.; Engbæk, J.; Lytken, O.; Horch, S.; Nielsen, J. H.; Sehested, J.; Rostrup-Nielsen, J. R.; Norskov, J. K.; Chorkendorff, I. J. Catal. 2008, 255, 6.
(35)Huo, C.-F.; Ren, J.; Li, Y.-W.; Wang, J.; Jiao, H. J. Catal. 2007, 249, 174.
(36)Wielers, A. F. H.; Koebrugge, G. W.; Geus, J. W. J. Catal. 1990, 121, 375.
(37)Gong, X.-Q.; Raval, R.; Hu, P. J. Chem. Phys. 2005, 122, 024711.
(38)Ciobîcă, I. M.; Frechard, F.; van Santen, R. A.; Kleyn, A. W.; Hafner, J. J. Phys. Chem. B 2000, 104, 3364.
(39)Lide, R. D. CRC Handbook of Chemistry and Physics, 76th ed.; CRC Press: Boca Raton, FL, 1995.
(40)Zhang, Q.; Kang, J.; Wang, Y. ChemCatChem 2010, 2, 1030.
(41)Rofer-DePoorter, C. K. Chem. Rev. 1981, 81, 447.
(42)Qin, S.; Zhang, C.; Wu, B.; Xu, J.; Xiang, H.; Li, Y. Catal. Lett. 2010, 139, 123.
(43)Bengoa, J.F.; Alvarez, A.M.; Cagnoli, M.V.; Gallegos, N.G.; Yeramian, A.A.; Marchetti, S.G. Mater. Lett. 2002, 53, 6.
(44)Lohitharn, N.; Goodwin Jr, J. G.; Lotero, E. J. Catal. 2008, 255, 104.
參考文獻(3):
(1) Duan, S; Senkan, S. Ind. Eng. Chem. Res. 2005, 44, 6381.
(2) Whittingham, M. S.; Savinell, R. F.; Zawodzinski, T. Chem. Rev. 2004, 104,4243.
(3) Holladay, J. D.; Wang, Y.; Jones, E. Chem. Rev. 2004,104, 4767.
(4) Navarro, R. M.; Peňa, M. A.; Fierro, J. L. G. Chem.Rev. 2007, 107, 3952.
(5) Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2004,126, 3910.
(6) Cortright, R. D.; Davda, R. R. ; Dumesic, J. A. Nature2002, 418, 964.
(7) Dien, B. S.; Cotta, M. A.; Jefrries, T. W. Appl. Microbiol. Biotechnol. 2003, 63,258.
(8) Ni, M.; Leung, D. Y. C.; Leung, M. K. H. Int. J. Hydrog. Energy 2007, 32, 3238.
(9) Kugai, J.; Subramani, V.; Song, C.; Engelhard, M. H.; Chin, Y.-H. J. Catal. 2006,238, 430.
(10) Fierro, V.; Akdim, O.; Mirodatos, C. Green Chem. 2003, 5, 20.
(11) Frusteri, F.; Freni, S.; Spadaro, L.; Chiodo, V.; Bonura, D.; Donato, S.; Cavallaro,S. Catal. Commun. 2004, 5, 611.
(12) Deluga, G. A.; Salge, J. R.; Schmidt, L. D.; Verykios, X. E. Science 2004, 303,993.
(13) Wang, X.; Gorte, R. J.; Wagner, J. P. J. Cata. 2002, 212, 225.139
(14) Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S. Energy Fuels 2005, 19,2098.
(15) Vaidya, P. D.; Rodrigues, A. E. Chem. Eng. J. 2006, 117, 39.
(16) Kaspar, J.; Fornasiero, P.; Graziani, M. Catal. Today 1999, 50, 285.
(17) Yao, H. C.; Yao, Y. F. J. Catal. 1984, 86, 254.
(18) Ferrizz, R.M.; Wong, G.S.; Egami, T.; Vohs, J.M. Langmuir 2001, 17, 2464.
(19) Yee, A.; Morrison, S. J.; Idriss, H. Catal. Today 2000, 63, 327.
(20) Laosiripojana, N.; Assabumrungrat, S. Appl. Catal. B-Environ. 2006, 66, 29.
(21) Zaki, M. I.; Hasan, M. A.; Pasupulety, L. Langmuir 2001, 17, 768.
(22) Brown, N. F.; Barteau, M. A. Langmuir 1995, 11, 1184.
(23) Sheng, P.-Y.; Yee, A.; Bowmaker, G. A.; Idriss, H. J. Catal. 2002, 208, 393.
(24) Skorodumova, N. V.; Baudin, M.; Hermansson, K. Phys. Rev. B 2004, 69,075401.
(25) Siokou, A.; Nix, R. M. J. Phys. Chem. B 1999, 103, 6984
(26) White, J. A.; Bird, D. M. Phys. Rev. B 1994, 50, 4954.
(27) Eyring, L. Handbook on the Physics and Chemistry of Rare Earths, Amsterdam,North-Holland, 1979.
(28) Mei, D.; Deskins, N. A.; Dupuis, M. Surf. Sci. 2007, 601, 4993.
(29) Chafi, Z.; Keghouche, N.; Minot, C. Surf. Sci. 2007, 601, 2323.140
(30) Chen, H.-L.; Peng, W.-T.; Ho, J.-J. Chem. Phys. 2008, 348, 161.
(31) Costa, L. O. O.; Vasconcelos, S. M. R.; Pinto, A. L.; Silva, A. M.; Mattos, L. V.;
Noronha, F. B.; Borges, L. E. P.; Mater, J. J. Mater. Sci. 2008, 43, 440.
(32) Wang, J.-H.; Liu, M.; Lin, M. C. Solid State Ion. 2006, 177, 939.
(33) Park, J.; Zhu, R. S.; Lin, M. C. J. Chem. Phys. 2002, 117, 3224.
(34) (a) Coussan, S.; Bouteiller, Y. J.; Perchard, P. J. Phys. Chem. A 1998, 102, 5789.
(b) Lide, D.R. CRC Handbook of Chemistry and Physics, 76th end., CRC Press,
Boca Raton, FL, USA, 1995, p. 931.
(35) Choi, Y. M.; Abernathy, H.; Chen, H.-T.; Lin, M. C.; Liu, M. ChemPhysChem2006, 7, 1957.
(36) Pushkarev, V. V.; Kovalchuk, V. I.; d’Itri, J. L. J. Phys. Chem. B 2004, 108, 5341.
(37) Idriss, H.; Platinum Met. Rev. 2004, 48, 105.
(38) Diagne, C.; Idriss, H.; Kiennemann, A Catal. Commun. 2002, 3, 565.
(39) Chen, H.-L.; Liu, S.-H.; Ho, J.-J. J. Phys. Chem. B 2006, 110, 14816.
(40) Yang, M.-M.; Bao, X.-H.; Li, W.-X. J. Phys. Chem. C 2007, 111, 7403.