簡易檢索 / 詳目顯示

研究生: 白正康
Cheng-Kang Pai
論文名稱: 雙功能半纖維素分解酵素之基因選殖及其在木質纖維素分解之應用
Molecular cloning of a bifunctional xylanolytic enzyme from Neocallimastix patriciarum and its application in lignocellulose degradation
指導教授: 童麗珠
Tung, Li-Chu
劉嚞睿
Liu, Je-Ruei
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 144
中文關鍵詞: 聚木糖酶乙醯聚木糖酯酶雙功能酵素嵌合體酵素稻桿
英文關鍵詞: xylanase, acetylxylan esterase, bifunctional enzyme, chimeric enzyme, rice straw
論文種類: 學術論文
相關次數: 點閱:207下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在品質較差而價格較低廉的草料中,往往含有較多難以被酵素分解的聚木糖與木質素等成分,這些成分的存在,間接影響了牛隻的飼料使用效率;然而,台灣水牛(Bubalus bubalus carabanesis)為一沼澤生活型的牛種,具有極高抵抗環境壓力與適應粗草料的特性。本論文從台灣水牛的瘤胃真菌Neocallmastix patriciarum S20中,選殖出一個具有雙功能的聚木糖分解酵素基因,名為xynS20E,並利用此酵素進行了以下的研究:

    第一部分 – 從瘤胃真菌Neocallmastix patriciarum S20 cDNA庫中選殖具有雙功能聚木糖分解酵素的基因

    本研究從N. patriciarum cDNA庫中選殖出一條具有乙醯化聚木糖酯酶活性與聚木糖酶活性的酵素基因,命名為 xynS20E。此基因具有一個2,016鹼基對的完整序列,其中包含162鹼基對的5’端非轉譯區與243鹼基對的3’端非轉譯區。此基因可轉譯出671個胺基酸的蛋白質,分子量約為72.4 kDa。其胺基酸序列中, N端具有一個碳水化合物酯酶第1族(carbohydrate esterase family 1)的功能性區域,而C端具有醣苷水解酶第11族(glycosyl hydrolase family 11)的功能性區域。此外,在這兩個功能性區域之間,則含有兩個真菌搭載結合蛋白第1型(fungal dockerin domain type I)之序列。後續實驗中,利用基因工程技術,將xynS20E選殖於pET29a表現載體,並利用大腸桿菌大量表達此帶有6個組胺酸之重組酵素,並藉由鎳離子親和性管柱純化,以製備XynS20E酵素。

    第二部分 – 利用反應曲面法最佳化XynS20E之乙醯化聚木糖酯酶與雙功能聚木糖酶

    反應曲面法搭配複合式中心設計法與統計迴歸分析可以有效率地得知酵素最佳反應活性的溫度與酸鹼值。利用此方法,得知XynS20E的乙醯化聚木糖酯酶在58°C與pH 8.2具有最佳比活性,為873.1±18.0 U/mg;XynS20E的聚木糖酶在49°C與pH 5.8達到最佳比活性,為128.7±32.9 U/mg。另外,乙醯化聚木糖酯酶功能性區域被獨立選殖於表現載體pET29a中,命名為AxeS20E。AxeS20E經由反應曲面法分析,於54.6°C與pH 7.8時具有最佳比活性;在80°C加熱120分鐘後,仍可保有85%以上的酵素活性,展現良好的耐熱穩定性。

    第三部分 – 利用嵌合體酵素分解木質纖維素

    XynCDBFV唯一已知具有高活性之聚木糖酶。應用反應曲面法更進一步地得知此酵素的最佳反應條件為55.3°C與pH 5.3,此反應條件下可測得比活性為9543.6±434.9 U/mg;進一步利用基因工程技術,分別將AxeS20E融合於XynCDBFV的N端與C端,並在兩個酵素之間設計了二個重複的GGGGS胺基酸鏈作為連結,產生兩個不同的嵌合體酵素(分別命名為AxeS20E-XynCDBFV和XynCDBFV-AxeS20E)。以反應曲面法分析此二嵌合體酵素,可得AxeS20E-XynCDBFV的最佳反應條件為62°C與pH 5.4,最佳比活性為6225.4±528.5 U/mg; XynCDBFV-AxeS20E的最佳反應條件為60°C與pH 5.4,最佳比活性為3945.6±154.1 U/mg。AxeS20E-XynCDBFV和XynCDBFV-AxeS20E在耐熱穩定性實驗中,在60°C環境中處理120分鐘後,分別保有60%與80%以上的原始活性;此雙功能融合酵素在協同效益的測試中,聚木糖分解能力較單一酵素單獨作用降低了8% ~ 30%酵素活性;將天然稻桿以酵素處理48小時後,以AxeS20E-XynCDBFV和XynCDBFV-AxeS20E處理分別較單一酵素處理時提高了1.3和1.2倍的還原糖濃度。
    本研究為第一個從瘤胃真菌中發現具有乙醯化聚木糖酯酶與聚木糖酶的雙功能聚木糖分解酵素。結果亦顯示,反應曲面法搭配複合式中心設計法與統計迴歸分析提供了一個尋求反應條件最佳化的有利策略。研究並證實,AxeS20E具有良好的耐熱穩定性,此一特點將是應用於工業發酵中相當受到重視的一環;此外,人造雙功能嵌合體酵素展現了高於單一酵素的木質纖維素分解效率。

    The plant cell walls of the low-quality forage usually contain a high percentage of ligin and xylan, hence, are difficult to be degraded enzymatically. Taiwanese water buffalo, Bubalus bubalus carabanesis, belongs to the swamptype and can adapt to the environment stress and graze on the low-quality pasturelands. Taiwanese water buffalo is known to be able to digest crude fiber in a better way than the cattle. In this study, a bifunctional xylanolytic enzyme gene (xynS20E) was isolated from the cDNA library of the rumen fungus Neocallmastix patriciarum S20 established from the Taiwanese water buffalo. The whole study of this dissertation is divided into three parts as follows:

    Part I - Cloning of a bifunctional xylanolytic enzyme gene from the ruminal fungus Neocallmastix patriciarum S20

    The cDNA library of N. patriciarum was constructed and used to screen the xylanolytic enzyme. A gene encoding a bifunctional acetylxylan esterase-xylanase, named XynS20E, was cloned. The cDNA sequence of xynS20E was found to contain a complete open reading frame (ORF) of 2,016 bp with 5’ and 3’ untranslated regions of 162 and 243 bp, respectively. Translation of the open reading frame of xynS20E revealed a protein of 671 amino acids with a predicted molecular weight of 72.4 kDa. According to the sequence-based classification, a putative conserved domain of family 1 carbohydrate esterase (CE) was observed at the N-terminus of XynS20E and a putative conserved domain of glycosyl hydrolase (GH) family 11 was found at the C-terminus of XynS20E. Two putative conserved fungal dockerin domains (FDDs) type I were found between the N-terminal family 1 CE catalytic domain and the C-terminal family 11 GH catalytic domain of XynS20E. To examine the activity of the gene product, xynS20E gene was cloned into the pET-29a expression vector and expressed in E. coli as recombinant His6 fusion proteins. The purified XynS20E-His6 fusion proteins were obtained after purification by the immobilized nickle ion-affinity chromatography.

    Part II – Statistical optimization of acetylxylan esterase and xylanase activities of the bifunctional xylanolytic enzyme XynS20E

    Response surface methodology (RSM), with central composite design (CCD), and regression analysis were successfully applied to obtain the optimal temperature and pH conditions of the recombinant XynS20E. The optimal condition for the highest enzyme activity of CE1 domain of XynS20E toward acetylxylan was observed at 58°C and pH 8.2 with specific activity of 873.1±18 U/mg. The optimal condition of GH11 domain toward oat spelt xylan was observed at 49°C and pH 5.8 with the specific activity of 128.7±32.9 U/mg. Further, the DNA sequence encoding CE1 domain of XynS20E gene, named axeS20E, was cloned into the pET29a expression vector and purified as recombinant AxeS20E-His6 fusion proteins. The optimal conditions for the highest activity of AxeS20E were observed at 54.6 °C and pH 7.8. This enzyme retained more than 85% of the initial activity after 120 minutes of heating at 80°C.

    Part III – Application of chimeric enzyme in lignocellulose degradation

    XynCDBFV is an alkalophilic endo--1,4-xylanase with high activity. The optimal conditions for the highest activity of XynCDBFV were observed at 55.3 °C and pH 5.3 with specific activity of 9543.6±434.9 U/mg. Further, AxeS20E was fused to the N-terminus of XynCDBFV, named AxeS20E-XynCDBFV, with (GGGGS)2 peptide as linker. And another chimeric enzyme was AxeS20E fused to the C-terminus of XynCDBFV, named XynCDBFV-AxeS20E, with the same linker. These two optimal conditions for highest activity of AxeS20E-XynCDBFV and XynCDBFV-AxeS20E were observed at 62°C, pH 5.4 and at 60 °C, pH 5.4 with specific activity of 6225.4±528.5 and 3945.6±154.1 U/mg, respectively. In the thermostability assay, AxeS20E-XynCDBFV and XynCDBFV-AxeS20E were retained more than 60% and 80% of initial activity after 120 min of heating at 60 °C, respectively. In lignocellulosic biomass conversion assay, the reducing sugars released in AxeS20E-XynCDBFV and XynCDBFV-AxeS20E treatment were 1.3 and 1.2 folds higher than that in XynCDBFV treatment after 48 h, respectively.
    This is the first report of a bifunctional xylanolytic enzyme with acetylxylan esterase and xylanase activities from the rumen fungus. The results suggested that RSM combined with CCD and regression analysis were effective in determining optimized temperature and pH conditions for the enzyme activity. The results also proved AxeS20E was thermo-tolerant and might be a good candidate for various biotechnological applications. Last, the constructed chimeric enzyme, AxeS20E-XynCDBFV and XynCDBFV-AxeS20E, showed a higher xylanase activities than the parental enzymes toward natural xylans of rice straw as substrates.

    中文摘要……………………………………………………………………………i Abstract …………………………………………………………………………v Chapter I Background ……………………………………………………1 1.1 Taiwanese buffalo 1.2 Ruminal fungi 1.3 Plant cell wall 1.4 Fibrolytic enzyme 1.5 Multifunctional enzyme and cellulosome 1.6 Tables and figures Chapter II Cloning of a bifunctional xylanolytic enzyme gene from the ruminal fungus Neocallmastix patriciarum S20…………………………………………………………………………………27 2.1 Introduction 2.2 Materials and methods 2.3 Results 2.4 Discussion 2.5 Tables and figures Chapter III Statistical optimization of acetylxylan esterase and xylanase activities of the bifunctional xylanolytic enzyme XynS20E………………………………………………50 3.1 Introduction 3.2 Materials and methods 3.3 Results 3.4 Discussion 3.5 Tables and figures Chapter IV Application of chimeric enzyme in lignocellulose degradation………………………………………………70 4.1 Introduction 4.2 Materials and methods 4.3 Results 4.4 Discussion 4.5 Tables and figures Chapter V Conclusion……………………………………………………102 Reference………………………………………………………………………104 Appendix…………………………………………………………………………117

    王銘堪,1984。水牛事業。台灣畜牧獸醫事業養牛篇。台灣省政府農林廳編。第272-297頁。

    Akhnazarova, S. and V. Kafarov. 1982. Experiment optimization in chemistry and chemical engineering. Mir, Moscow.

    An, J. M., Y. K. Kim, W. J. Lim, S. Y. Hong, C. L. An, E. C. Shin, K. M. Cho, B. R. Choi, J. M. Kang, S. M. Lee, H. Kim, and H. D. Yun. 2005. Evaluation of a novel bifunctional xylanase-cellulase constructed by gene fusion. Enzyme Microb. Technol. 36:989-995.

    Anderlund, M., P. Radstrom, and B. Hahn-Hagerdal. 2001. Experssion of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation. Metab. Eng. 3:226-235.

    Arai, R., H. Ueda, A. Kitayama, N. Kamiya, and T. Nagamune. 2001. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng. 14:529-532.

    Aurilia, V., J. C. Martin, S. I. McCrae, K. P. Scott, M. T. Rincon, and H. J. Flint. 2000. Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences. Microbiol. 146: 1391-1397.

    Barr, D. J. S., H. Kudo, K. D. Jakober, and K. J. Cheng. 1989. Morphology and development of rumen fungi: Neocallimastix sp., Piromyces communis, and Orpinomyces bovis gen.nov., sp.nov. Can. J. Bot. 67:2815-2824.

    Bayer, E. A., J. P. Belaich, Y. Shoham, and R. Lamed. 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58:521-554.

    Beguin, P. 1983. Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Anal. Biochem. 131:333-336.

    Betts, W. B., R. K. Dart, A. S. Ball, and S. L. Pedlar. 1992. Biosynthesis and structure of lignocelluloses. In: Betts, W.B. (Ed.), Biodegradation, natural and synthetic materials. Springer-Verlag, London, pp. 139-156.

    Bidlack, J., M. Malone, and R. Benson. 1992. Molecular structure and component integration of secondary cell walls in plants. Proc. Okla. Acad. Sci. 72:51-56.

    Biely, P., J. Puls, and H. Schneider. 1985. Acetyl xylan esterases in fungal cellulolytic systems. FEBS Lett. 186: 80-84.

    Blum, D. L., I. A. Kataeva, X. L. Li, and L. G. Ljungdahl. 2000. Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J. Bacteriol. 182: 1346-1351.

    Blum, D. L., X. L. Li, H. Chen, and L. G. Ljungdahl. 1999. Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl. Environ. Microbiol. 65: 3990-3995.

    Bonnin, E., S. Daviet, J. F. Sorensen, O. Sibbesen, A. Goldson, N. Juge, and L. Saulnier. 2006. Behaviour of family 10 and 11 xylanases towards arabinoxylans with varying structure. J. Sci. Food Agric. 86: 1618-1622.

    Borneman, W. S., R. D. Hartley, D. S. Himmelsbach, and L. G. Ljungdahl. 1990. Assay for trans-p-coumaroyl esterase using a specific substrate from plant cell walls. Anal. Biochem. 190: 129-133.

    Bouveng, H. O. 1961. Phenylisocyanate derivatives of carbohydrates II. Location of O-acetyl groups in birch xylan. Actn. Clzem. Scnnd. 15: 96-100.

    Breton, A., A. Bernalier, and M. Dusser. 1990. Anaeromyces mucronatus nov.gen., nov.sp. a new strictly anaerobic rumen fungus with polycentric thallus. FEMS Microbiol. Lett. 70:177-182.

    Brookman, J. L., G. Mennim, A. P. Trinci, M. K. Theodorou, and D. S. Tuckwell. 2000 Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITS1 and 18S rRNA. Microbiol. 146:393-403.

    Bryant, M. P. 1972. Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutr. 25:1324-1328.

    Campbell, J. M., J. C. Fahey, and B. W. Wolf. 1997. Selected indigestible oligosaccharides after large bowel mass, cereal and fecal short-chain fatty acids, pH and microflora in rats. J. Nutr. 127: 130-136.

    Cepeljnik, T., M. T. Rincon, H. J. Flint, and R. Logar. 2006. Xyn11A, a multidomain multicatalytic enzyme from Pseudobutyrivibrio xylanivorans Mz5T. Folia Microbiol. 51: 263-267.

    Chakar, F. S. and A. J. Ragauskas. 2004. Review of current and future softwood kraft lignin process chemistry. Ind. Crop. Prod. 20: 131-141.

    Chen, Y. C., S. D. Tsai, H. L. Cheng, C. Y. Chien, C. Y. Hu, and T. Y. Cheng. 2007. Caecomyces sympodialis sp. nov., a new rumen fungus isolated from Bos indicus. Mycologia 99:125-130.

    Chen, Y. L., T. Y. Tang, and K. J. Cheng. 2001. Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Can. J. Microbiol. 47:1088-1094.

    Chesson, A. and C. W. Forsberg. 1988. Polysaccharide degradation by rumen microorganisms. In: Hobson, P.N. (Ed.), The rumen microbial ecosystem. Elsevier Applied Science, New York, pp. 251-284.

    Chung, Y. C., C. K. Hsu, C. Y. Ko, and Y. C. Chan. 2007. Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly. Nutr. Res. 27: 756-761.

    Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23.

    Cosgrove, D.J. 2005. Growth of the plant cell wall. Nat. Rev. Mol. Cell biol. 6: 850-861.

    Cybinski, D. H., I. Layton, J. B. Lowry, and B. P. Dalrymaple. 1999. An acetylxylan esterase and a xylanase expressed from genes cloned from the ruminal fungus Neocallimastix patriciarum act synergistically to degrade acetylated xylans. Appl. Microbiol. Biotechnol. 52:221-225.

    Dalrymple, B. P., D. H. Cybinski, I. Layton, C. S. McSweeney, G. P. Xue, Y. J. Swadling, and J. B. Lowry. 1997. Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. Microbiol. 143:2605-2614.

    Dean, J. F. D. and K. E. Eriksson. 1992. Biotechnological modification of lignin structure and composition in forest trees. Holzforschung 46: 135-147.

    Dekker, R. F. G. 1983. Bioconversion of hemicellulose: aspects of hemicellulase production by Trichoderma reesei QM 9414 and enzymic saccharification of hemicellulose. Biotechnol. Bioeng. 30:1127-1146.

    Denman, S., G.P. Xue, and B. Patel. 1996. Characterization of a Neocallimastix patriciarum cellulase cDNA (celA) homologous to Trichoderma reesei cellobiohydrolase II. Appl. Environ. Microbiol. 62:1889-1896.

    Ding, S. J., J. Cao, R. Zhou, and F. Zheng. 2007. Molecular cloning, and characterization ofamodularacetyl xylan esterase fromthe edible strawmushroom Volvariella volvacea. FEMS Microbiol. Lett. 274:304-310.

    Dupont, C., N. Daigneault, F. Shareck, R. Morosoli, and D. Kluepfel. 1996. Purification and characterization of an acetyl xylan esterase produced by Streptomyces lividans. Biochem. J. 319:881-886.

    Esau, K. 1977. Cell wall. In: Plant anatomy. John Wiley and Sons, New York, pp. 43-60.

    Fan Z. and J. R. Werkman. 2009. Engineering of a multifunctional hemicellulase. Biotechnol. Lett. 31:751-757.

    Fan, Z., K. Wagschal, C. C. Lee, Q. Kong, K. A. Shen, I. B. Maiti, and L. Yuan. 2009a. The construction and characterization of two xylan-degrading chimeric enzymes. Biotechnol. Bioeng. 102:684-692.

    Fan, Z., K. Wagschal, W. Chen, M. D. Montross, C. C. Lee, and L. Yuan. 2009b. Multimeric hemicellulases facilitate biomass conversion. Appl. Environ. Microbiol. 75:1754-1757.

    Fanutti, C., T. Ponyi, G. W. Black, G. P. Hazlewood, and H. J. Gilbert. 1995. The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J. Biol. Chem. 270: 29314-29322.

    Ferreira, L. M. A., T. M. Wood, G. Williamson, C. Faulds, G. P. Hazlewood, G. W. Black, and H. J. Gilbert. 1993. A modular esterase from Pseudomonas fluorescens subsp. cellulosa contains a noncatalytic cellulose-binding domain. Biochem. J. 294:349-355.

    Fillingham, I. J., P. A. Kroon, G. Williamson, H. J. Gilbert, and G. P. Hazlewood. 1999. A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulase-hemicellulase complex. Biochem. J. 343:215-224.

    Flint, H. J., J. Martin, C. A. McPherson, A. S. Daniel, and J. X. Zhang. 1993. A bifunctional enzyme with separate xylanase and -(1,3-1,4)-glucanase domains, encoded by the XynD gene of Ruminococcus flavefaciens. J. Bacteriol. 175:2943-2951.

    Forsberg, C. W., K. J. Cheng, P. J. Krell, and J. P. Phillips. 1993. Establishment of rumen microbial gene pools and their manipulation to benefit fibre digestion by domestic animals. Proceedings VII World Conference on Animal Production. World Association for Animal Production, Edmonton. pp 281–316.

    Fry, C.S. 1982. Phenolic components of the primary cell wall. Biochem. J. 203: 493-504.

    Gilead, S. and Y. Shoham. 1995. Purification and characterization of -L-arabinofuranosidase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 61: 170-174.

    Goodwin, T. W. and E. I. Mercer. 1983. The plant cell wall. In: Introduction to plant biochemistry. Pergamon Press, New York, pp. 55-91.

    Gustavsson, M., J. Lehtio, S. Denman, T. T. Teeri, K. Hult, and M. Martinelle. 2001. Stable linker peptides for a cellulose-binding domain-lipase fusion protein expression in Pichia pastoris. Protein Eng. 14:711-715.

    Halgasova, N., E. Kutejova, and J. Timko. 1994. Purification and some characteristics of the acetylxylan esterase from Schizophyllum commune. Biochem. J. 298:751-755.

    Harada, K. M., K. Tanaka, Y. Fukuda, Y. Fukuda, W. Hashimoto, and K. Murata. 2008. Paenibacillus sp. strain HC1 xylanases responsible for degradation of rice bran hemicellulose. Microbiol. Res. 163: 293-298.

    Hartley, R. D. and C. W. Ford. 1989. Phenolic constituents of plant cell walls and wall biodegradability. In: Lewis, N. G., M. G. Paice (Ed.), Plant cell wall polymers: biogenesis and biodegradation. American Chemical Society, Washington, D. C., pp. 137-145.

    Have, R. T. and P. J. M. Teunissen. 2001. Oxidative Mechanisms Involved in Lignin Degradation by White-Rot Fungi. Chem. Rev. 101: 3397-3413.

    Heath, I. B., J. Kaminsky, and T. Bauchop. 1986. Basal body loss during fungual zoospore encystment: evidence against centriole autonomy. J. Cell Sci. 83:135-140.

    Heck, J. X., S. H. Flores, P. F. Hertz, and M. A. Z Ayub. 2006. Statistical optimization of thermo-tolerant xylanase activity from Amazon isolated Bacillus circulans on solid-state cultivation. Biores. Technol. 97:1902-1906.

    Hernandez, M., M. J. C. Hernandez-Coronado, M. D. Montiel, J. Rodriguez, and M. E. Arias. 2001. Analysis of alkali-lignin in a paper mill effluent decolourised with two Streptomyces strains by gas chromatography-mass spectrometry after cupric oxide degradation. J. Chromatography. 919:389-394.

    Ho, Y. W., and T. Bauchop. 1991. Morphology of three polycentric rumen fungi and description of a procedure for the induction of zoosporogenesis and release of zoospores in cultures. J. Gen. Microbiol. 137:213-217

    Ho, Y. W., D. J. S. Barr, and N. Abdullah. 1993. Anaeromyces, an earlier name for Ruminomyces. Mycotaxon 47:283-284.

    Hong, S. Y., J. S. Lee, K. M. Cho, R. K. Math, Y. H. Kim, S. J. Hong, Y. U. Cho, H. Kim, and H. D. Yun. 2006. Assembling a novel bifunctional cellulase-xylanase from Thermotoga maritima by end-to-end fusion. Biotechnol. Lett. 28:1857-1862.

    Hong, S. Y., J. S. Lee, K. M. Cho, R. K. Math, Y. H. Kim, S. J. Hong, Y. U. Cho, S. J. Cho, H. Kim, and H. D. Yun. 2007. Construction of the bifunctional enzyme cellulase--glucosidase from the hyperthermophilic bacterium Thermotoga maritima. Biotechnol. Lett. 29:931-936.

    Huang, Y. H., C. T. Huang, and R. S. Hseu. 2005. Effects of dockerin domains on Neocallimastix frontalis xylanases. FEMS Microbiol. Lett. 243:455-460.

    Imaizumi, K., Y. Nakatsu, M. Sato, Y. Sedarnawati, and M. Sugano. 1991. Effect of xylooligosaccharides on blood glucose, serum and liver lipids and cecum short-chain fatty acids in diabetic rats. Agric. Biol. Chem. 55: 195-205.

    Jagusztynkrynicka, E. K., J. E. Clarkcurtiss, and R. Curtiss. 1993. Escherichia coli heat-labile toxin subunit B fusions with Streptococcus sobrinus antigens expressed by Salmonella typhimurium oral vaccine strains: importance of the linker for antigenicity and biological activities of the hybrid proteins. Infect. Immun. 61:1004-1015.

    Katahira, S., M. Ito, H. Takeman, Y. Fujita, T. Tanino, T. Tanaka, H. Fukuda, and A. Kondo. 2008. Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb. Technol. 43:115-119.

    Khandeparker, R. and M. T. Numan. 2008. Bifunctional xylanases and their potential use in biotechnology. J. Ind. Microbiol. Biotechnol. 35:635-644.

    Konig, J., R. Grasser, H. Pikor, and K. Vogel. 2002. Determination of xylanase, β-glucanase, and cellulase activity. Anal. Bioanal. Chem. 374:80-87.

    Kosugi, A., K. Murashima, and R. H. Doi. 2002. Xylanase and acetyl xylan esterase activities of XynA, a key subunit of the Clostridium cellulovorans cellulosome for xylan degradation. Appl. Environment. Microbiol. 68: 6399-6402.

    Krause, D. O., S. E. Denman, R. I. Mackie, M. Morrison, A. L. Rae, G. T. Attwood, and C. S. McSweeney. 2003. Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol. Rev. 27: 663-693.

    Kulkarni, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456.

    Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophate T4. Nature 227: 680-685.

    Larkin, J. M. 1989. Nonphotosynthetic, nonfruiting gliding bacteria. In: Staley, J. T., M. P. Bryant, N. Pfennig and J. G. Holt. (Ed.), Bergey’s Manual of Systematic Bacteriology vol. 3, Williams and Wilkins, Baltimore, MD, pp. 2010-2138.

    Lee, R. L., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577.

    Lenting, H. B. M. and M. M. C. G. Xarmoeskerken. 2001. Mechanism of interaction between cellulase actin and applied shear force, a hypothesis. J. Biotechnol. 89: 217-226.

    Lindberg, B., K. G. Rosell, and S. Svensson. 1973. Position of the O-acetyl groups in birch xylan. Svensk. Papperitid. 76, 30-32.

    Ljungdahl, L. G. 2008. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann. N. Y. Acad. Sci. 1125: 308-321.

    Lu, P. and M. G. Feng. 2008. Bifunctional enhancement of a β-glucanasexylanase fusion enzyme by optimization of peptide linkers. Appl. Microbiol. Biotechnol. 79:579-587.

    Lu, P., M. G. Feng, W. F. Li, and C. X. Hu. 2006. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced -glucanase and xylanase expressed in Escherichia coli. FEMS Microbiol. Lett. 261:224-230.

    Mackie, R. I. 1997. Gut environment and evolution of mutualistic fermentative digestion. In: Mackie, R.I., B.A. White (Ed.), Gastrointestinal Microbiology, Vol. 1. Chapman and Hall, New York, pp. 13-35.

    Marrone, L., K. A. McAllister, and A. J. Clarke. 2000. Characterization of function and activity of domains A, B and C of xylanase C from Fibrobacter succinogenes S85. Protein Eng. 13:593-601.

    Mason, I. L. 1974. Species, types and breeds. In: Cockrill, W.R. (ed.), Husbandry and health of the domestic buffalo. FAO, Rome, pp. 1-47.

    May, T., R. I. Mackie, and K. A. Garleb. 1995. Effect of dietary oligosaccharides in the intestinal growth of and tissue damage by Clostridium difficile. Mikrooekol. Ther. 23: 158-170.

    Nagy, T., R. B. Tunnicliffe, L. D. Higgins, C. Walters, H. J. Gilbert, and M. P. Williamson. 2007. Characterization of a double dockerin from the cellulosome of the anaerobic fungus Piromyces equi. J. Mol. Biol. 373:612-622.

    Okazaki, M., S. Fujikawa, and N. Matsumoto. 1990. Effect of xylooligosaccharide on the growth of bifidobacteria. J. Jpn. Soc. Nutr. Food Sci. 43: 395-401.

    Orpin, C. G. and E. A. Munn. 1986. Neocallimastix patriciarum: new member of the Neocallimasticaceae inhabiting the sheep rumen. Trans. Br. Mycol. Soc. 86:178-181.

    Orpin, C. G. and K. N. Joblin. 1997. The rumen anaerobic fungi. In: Hobson, P.N. and C.S. Stewart (Ed.), The rumen microbial ecosystem. Blackie Academic and Professional, London, pp. 140-195.

    Ozkose, E., B. J. Thomas, D. R. Davies, G. W. Griffith, and M. K. Theodorou. 2001. Cyllamyces aberensis gen.nov. sp.nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Can. J. Bot. 79:666-673.

    Pason, P., K. L. Kyu, and K. Ratanakhanokchai. 2006. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl. Environ. Microbiol. 72: 2483-2489.

    Peer, A., S. P. Smith, E. A. Bayer, R. Lamed, and I. Borovok. 2009. Noncellulosomal cohesion- and dockerin-like modules in the three domains of life. FEMS Microbiol. Lett. 1:1-16.

    Perez-Avalos, O., L. M. Sanchez-Herrera, L. M. Salgado, and T. Ponce-Noyola. 2008. A bifunctional endoglucanase/endoxylanase from Cellulomonas flavigena with potential use in industrial processes at different pH. Curr. Microbiol. 57:39-44.

    Petriz, J., M. M. Gottesman, and J. M. Aran. 2004. An MDR-EGFP gene fusion allows for direct cellular localization, function and stability assessment of p-glycoprotein. Curr. Drug Deliv. 1:43-56.

    Polizeli, M. L. T. M., A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591.

    Puls, J., O. Schmidt, and C. Granzow. 1987. -Glucuronidase in two microbial xylanolytic systems. Enzyme Microb. Technol. 9:83-88.

    Raghothama, S., R. Y. Eberhardt, P. Simpson, D. Wigelsworth, P. White, and G. P. Hazlewood. 2001. Characterization of a cellulosome dockerin domain from the anaerobic fungus Piromyces equi. Nature Struct. Biol. 8:775-778.

    Roberfroid, M. B. 1997. Health benefits of non-digestible oligosaccharides. Adv. Exp. Med. Biol. 427:211-219.

    Saha, B. C. 2003. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30: 279-291.

    Salisbury, F. B. and C. W. Ross. 1992. Plant physiology and plant cells. In: Plant physiology. Wadsworth, Inc., Belmont, pp. 3-26.

    Sambrook, J., and D. W. Russell. 2001. In: Molecular cloning: a laboratory manual, third ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Selig, M. J., E. P. Knoshaug, W. S. Adney, M. E. Himmel, and S. R. Decker. 2008a. Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresource Technol. 99: 4997-5005.

    Selig, N., N. Weiss, and Y. Ji. 2008b. Enzymatic saccharification of lignocellulosic biomass. National Renewable Energy Laboratory, Golden, CO, 80401.

    Selinger L. B., C. W. Forsberg, and K. J. Cheng. 1996. The rumen: a unique source of enzymes for enhancing livestock production. Anaerobe. 2: 263-284.

    Seo, H. S., Y. J. Koo, J. Y. Lim, J. T. Song, C. H. Kim, J. K. Kim, J. S. Lee, and Y. D. Choi. 2000. Characterization of a bifunctional enzyme fusion of trehalose-6-phosphate synthetase and trehalose-6-phosphate phosphatase of Escherichia coli. Appl. Environ. Microbiol. 66:2484-2490.

    Shao, W. and J. Wiegel. 1995. Purification and characterization of two acetyl xylan esterases from Thermoanaerobacterium sp. strain JW/SL-YS485. Appl. Environ. Microbiol. 61: 729-733.

    Shen, X. and L. Xia. 2004. Production and immobilization of cellobiase from Aspergillus niger ZU-07. Process Biochem. 39: 1363-1367.

    Shin, E. S., M. J. Yang, K. H. Jung, E. J. Kwon, J. S. Jung, S. K. Park, J. Kim, H. D. Yun, and H. Kim. 2002. Influence of the transposition of the thermostabilizing domain of Clostridium thermocellum Xylanase (XynX) on xylan binding and thermostabilization. Appl. Environ. Microbiol. 68:3496-3501.

    Sijpesteijn, A. K. 1951. On Ruminococcus flavefaciens, a cellulose-decomposing bacterium from the rumen of sheep and cattle. J. Gen. Microbiol. 5:869-879.

    Spanikova, S. and P. Biely. 2006. Glucuronoyl esterase – novel carbohydrate esterase produced by Schizophyllum commune. FEBS Lett. 580: 4597-4601.

    Steenbakkers, P. J. M., X. L. Li, E. A. Ximenes, J. G. Arts, H. Chen, L. G. Ljungdahl, and H. J. M. Op den Camp. 2001. Noncatalytic docking domains of cellulosomes of anaerobic fungi. J. Bacteriol. 183: 5325-5333.

    Subramaniyan, S. and P. Prema. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and aoolication. Crit. Rev. Biotechnol. 22: 33-64.

    Terri, T. T. 1997. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol. 15: 160-167.

    Teather, R.M., and P. J. Wood. 1982. Use of Congo red–polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43:777-780.

    Volkel, T., T. Korn, M. Bach, R. Muller, and R. E. Kontermann. 2001. Optimized linker sequences for the expression of monomeric and dimeric bispecific single-chain diabodies. Protein Eng. 14:815-823.

    Wakarchuk, W. W., R. L. Campbell, W. L. Sung, J. Davoodi, and M. Yaguchi. 1994. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Protein Sci. 3:467-475.

    Warren, R. A. J. 1996. Microbial hydrolysis of polysaccharides. Annu. Rev. Microbiol. 50: 183-212.

    Watanabe, T. and T. Koshijima. 1988. Evidence for an ester linkage between lignin-carbohydrate complexes by DDQ-oxidation. Agric. Biol. Chem. 52: 2953-2955.

    Wen, F., J. Sun, and H. Zhao. 2010. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl. Environ. Microbiol. 76:1215-1260.

    Wiselogel, A., S. Tyson, and D. Johnson. 1996. Biomass feedstock resources and composition. In: Wyman, C. E. (Ed.), Handbook on bioethanol: Production and utilization. Taylor and Framics, Bristol, PA. pp. 105-118.

    Wubah, D. A. and M. S. Fuller. 1991. Studies on Caecomyces communis: morphology and development. Mycologia 83:303-310.

    Xie, G., D. C. Bruce, J. F. Challacombe, O. Chertkov, J. C. Detter, P. Gilna, C. S. Han, S. Lucas, M. Misra, G. L. Myers, P. Richardson, R. Tapia, N. Thayer, L. S. Thompson, T. S. Brettin, B. Henrissat, D. B. Wilson, and M. J. McBride. 2007. Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl. Environ. Microbiol. 73: 3536-3546.

    Yu, P., J. J. McKinnon, D. D. Maenz, V. J. Racz, and D. A. Christensen. 2004. The specificity and the ability of Aspergillus feruloyl esterase to release p-coumaric acid from complex cell walls of oat hulls. J. Chem. Technol. Biotechnol. 79: 729-733.

    Zhang, J. X. and H. J. Flint. 1992. A bifunctional xylanase encoded by the XynA gene of the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 comprises two dissimilar domains linked by an asparagines/glutamine-rich sequence. Mol. Microbiol. 6:1013-1023.

    下載圖示
    QR CODE