簡易檢索 / 詳目顯示

研究生: 黃詮友
Huang, Quan-You
論文名稱: 以氧氣場效蝕刻法製備鈮奈米針
Field-assisted oxygen etching for Niobium nanotip
指導教授: 傅祖怡
Fu, Tsu-Yi
黃英碩
Hwang, Ing-Shouh
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 75
中文關鍵詞: 場發射鈮針場效蝕刻場離子顯微鏡
英文關鍵詞: field emission, niobium, field-assisted etching, FIM
DOI URL: https://doi.org/10.6345/NTNU202204453
論文種類: 學術論文
相關次數: 點閱:102下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們提出在超高真空環境下多晶鈮針的簡易的針型修復技術。這種針型修復技術是基於在場離子顯微鏡的操作下空間性的控制氧氣與鈮表面原子發生反應。限制場效蝕刻反應發生在針柄處使我們得以製作鈮奈米針。從FIM成像偏壓下降以及針尖部位FIM影像面積縮減可證實奈米針尖形成。我們場效蝕刻鈮針在三個不同的樣品溫度(25K、50K、80K) 。然後我們比較其蝕刻效率與影像品質。
    我們量測蝕刻後針尖的場發射電子電流並繪製F-N圖。F-N圖顯示場效蝕刻後針尖的針型在熱處理後會發生變化。我們也對30分鐘內鈮奈米針的場發射電流穩定度進行量測。當場發射電子電流434Pa時,不穩定度在10%以下。

    We present a straightforward modification technique for poly-crystal niobium tips in UHV. The modification technique is based on spatially controlling the reaction of oxygen gas with the surface atoms of a niobium tip in a field ion microscope (FIM). Confining this field-assisted etching reaction to the shank has enabled us to produce niobium nano- tips. Nano-tip formation is evident from the decrease in the FIM imaging voltage and the decrease in the apex area. We field-assisted etch niobium tip at three different temperature (25K,50K,80K). Then we compare the etching efficiency and FIM image quality.
    We measure the field emission electron current form the etched nano-tip and illustrate the F-N plot. The F-N plot shows that the shape of the etched tip will change after thermal treatment. We also measure the stability of the field emission current from the etched niobium nano-tip in 30 minute. When the emission electron current is 434pA, the instability is less than 10%.

    致謝 I 摘要 III ABSTRACT IV 第一章 緒論 1 1-1 奈米針與單原子針的優勢 1 1-2 奈米針與單原子針的發展、製備與研究 3 1-2-1 早期奈米針與單原子針的製備技術 3 1-2-2 吸附物誘發皺化法製備奈米針或單原子針 5 1-2-3 場效蝕刻法製備奈米針或單原子針 7 1-2-4 鈮奈米針的特性與製備 8 第二章 實驗原理 10 2-1 場離子顯微術原理 11 2-1-1 場吸附、場離子化、場退吸附與場蒸發 11 2-1-2 樣品降溫與場離子化成像 18 2-1-3 場離子影像說明 20 2-2 場效蝕刻機制 22 2-2-1 氮場效蝕刻 22 2-2-2 氧場效蝕刻 23 2-3 電子場發射原理 25 第三章 實驗儀器與樣品製備 28 3-1 場離子顯微鏡的儀器裝置 28 3-1-1 真空系統 29 3-1-2 低溫系統 29 3-1-3 成像系統 31 3-1-4 高電壓系統 33 3-1-5 法拉第杯 33 3-2 樣品製備 35 第四章 結果與討論 39 4-1 鈮蝕刻系統環境參數 39 4-1-1 蝕刻氣體與成像氣體的選用 39 4-1-2 蝕刻過程偏壓的調整 42 4-1-3 樣品溫度對場效蝕刻的影響 43 4-2 不同樣品溫度下的鈮針場效蝕刻 45 4-2-1 樣品溫度25K下的場效蝕刻 45 4-2-2 樣品溫度80K下的場效蝕刻 57 4-2-3 樣品溫度50K下的場效蝕刻 59 4-3 場發射電流量測 62 4-3-1 純鈮針場發射電流F-N圖 62 4-3-2 鈮針場發射電流穩定性 66 4-4 針型穩定度 67 第五章 結論 70 5-1 鈮蝕刻系統環境參數 70 5-2 不同樣品溫度下的鈮針場效蝕刻 70 5-3 場發射電流量測 71 5-4 針型穩定度 71 參考資料 72

    [1] R. Gomer, Field Emission and Field Ionization, Harvard University Press, 34 (1961).
    [2] 黃英碩, 郭鴻曦, 張哲誠, 林君岳, 鄭天佐, 單原子電子源與離子源之應用, 科儀新知, 第三十一卷第二期 (2009).
    [3] H.-W. Fink, Mono-atomic tips for scanning tunneling microscopy, IBM Journal of Research and Development, 30 (1986)
    460 - 465.
    [4] H.-W. Fink, Point Source for Ions and Electrons, Physica Scripta. , 38 (1988) 260-263.
    [5] A.P. Janssen, J. J. P. Jones, Phys. D, 4 (1971).
    [6] P.C. Bettler, F.M. Charbonnier, Activation Energy for the Surface Migration of Tungsten in the Presence of a High-Electric Field, Physical Review, 119 (1960) 85-93.
    [7] V.T. Binh, N. García, On the electron and metallic ion emission from nanotips fabricated by field-surface-melting technique: experiments on W and Au tips, Ultramicroscopy, 42 (1992) 80-90.
    [8] V.T. Binh, S.T. Purcell, N. Garcia, J. Doglioni, Field-emission electron spectroscopy of single-atom tips, Physical Review Letters, 69 (1992) 2527-2530.
    [9] H.-S. Kuo, I.-S. Hwang, T.-Y. Fu, J.-Y. Wu, C.-C. Chang, T.T. Tsong, Preparation and Characterization of Single-Atom Tips, Nano Letters, 4 (2004) 2379-2382.
    [10] 郭鴻曦, 黃英碩, 傅祖怡, 鄭天佐, 熱穩定單原子針的製備特性與前景, 物理雙月刊, 二九卷一期 (2007).
    [11] T.-Y. Fu, L.-C. Cheng, C.H. Nien, T.T. Tsong, Method of creating a Pd-covered single-atom sharp W pyramidal tip: Mechanism and energetics of its formation, Physical Review B, 64 (2001) 113401.
    [12] K. Nomura, E. Rokuta, T. Itagaki, C. Oshima, H.-s. Kuo, T.T. Tsong, Electron Emission Characteristics of Au-covered Tungsten<111> Nanotips, e-Journal of Surface Science and Nanotechnology, 6 (2008) 25-28.
    [13] H.-S. Kuo, I.-S. Hwang, T.-Y. Fu, Y.-H. Lu, C.-Y. Lin, T.T. Tsong, Gas field ion source from an Ir∕W⟨111⟩ single-atom tip, Applied Physics Letters, 92 (2008) 063106.
    [14] K. Hong-Shi, H. Ing-Shouh, F. Tsu-Yi, H. Ying-Siang, L. Yi-Hsien, L. Chun-Yueh, H. Jin-Long, T.T. Tien, A single-atom sharp iridium tip as an emitter of gas field ion sources, Nanotechnology, 20 (2009) 335701.
    [15] J. Guan, R.A. Campbell, T.E. Madey, Ultrathin metal films on W(111): morphology and faceting reconstruction, Surface Science, 341 (1995) 311-327.
    [16] T.E. MADEY, J. GUAN, C.-H. NIEN, C.-Z. DONG, H.-S. TAO, R.A. CAMPBELL, FACETING INDUCED BY ULTRATHIN METAL FILMS ON W(111) AND Mo(111): STRUCTURE, REACTIVITY, AND ELECTRONIC PROPERTIES, Surface Review and Letters, 03 (1996) 1315-1328.
    [17] T.E. Madey, C.H. Nien, K. Pelhos, J.J. Kolodziej, I.M. Abdelrehim, H.S. Tao, Faceting induced by ultrathin metal films: structure, electronic properties and reactivity, Surface Science, 438 (1999) 191-206.
    [18] K.J. Song, C.Z. Dong, T.E. Madey, Faceting of tungsten(111) induced by ultrathin palladium films, Langmuir, 7 (1991) 3019-3026.
    [19] R. Bryl, A. Szczepkowicz, A method of microtip fabrication based on oxygen induced faceting, Applied Surface Science, 241 (2005) 431-434.
    [20] R. Bryl, A. Szczepkowicz, The influence of the oxygen exposure on the thermal faceting of W[1 1 1] tip, Applied Surface Science, 252 (2006) 8526-8532.
    [21] 林砡君, 覆銠、銥於鎢針上產生的皺化行為及其相關研究, 國立台灣師範大學碩士論文, (2005).
    [22] 侯勁龍, 覆鈀鉭針之皺化結構研究, 國立台灣師範大學碩士論文, (2008).
    [23] 李育賢, 以蝕刻吸附法備製覆銥鎢單原子級針尖與場發射電子電流量測, 國立台灣師範大學碩士論文, (2009).
    [24] 戴鵬哲, 氫、氧誘發鎳表面金字塔型單原子針尖, 國立台灣師範大學碩士論文, (2009).
    [25] 黃穎祥, 氧氣誘發銥(210)面皺化現象:金字塔結構銥單原子針的製備條件分析, 國立台灣師範大學碩士論文, (2007).
    [26] 陳曉琪, 覆鉑、銠於鉬針形成金字塔單原子針尖之研究, 國立台灣師範大學碩士論文, (2012).
    [27] 陳怡如, 覆鈀、銥於鉬針形成金字塔單原子針尖之研究, 國立台灣師範大學碩士論文, (2011).
    [28] 吳俊毅, 單原子尖度金字塔形鎢針的結構與應用之研究, 國立台灣師範大學碩士論文, (2003).
    [29] J.L. Pitters, R. Urban, C. Vesa, R.A. Wolkow, Tip apex shaping of gas field ion sources, Ultramicroscopy, 131 (2013) 56-60.
    [30] J.L. Pitters, R. Urban, R.A. Wolkow, Creation and recovery of a W(111) single atom gas field ion source, The Journal of Chemical Physics, 136 (2012) 154704.
    [31] M.d. Rezeq, J. Pitters, R. Wolkow, Tungsten nanotip fabrication by spatially controlled field-assisted reaction with nitrogen, The Journal of Chemical Physics, 124 (2006) 204716.
    [32] R. Urban, R.A. Wolkow, J.L. Pitters, Field ion microscope evaluation of tungsten nanotip shape using He and Ne imaging gases, Ultramicroscopy, 122 (2012) 60-64.
    [33] C. Vesa, R. Urban, J.L. Pitters, R.A. Wolkow, Robustness of tungsten single atom tips to thermal treatment and air exposure, Applied Surface Science, 300 (2014) 16-21.
    [34] J.A. Wood, R. Urban, M. Salomons, M. Cloutier, R.A. Wolkow, J.L. Pitters, Iridium single atom tips fabricated by field assisted reactive gas etching, Applied Surface Science, 367 (2016) 277-280.
    [35] Y. Sugiura, H. Liu, T. Iwata, S. Nagai, K. Kajiwara, K. Asaka, Y. Saito, K. Hata, Fabrication of Gas Field Ion Emitter by Field Induced Oxygen Etching Method, e-Journal of Surface Science and Nanotechnology, 9 (2011) 344-347.
    [36] F. Rahman, J. Onoda, K. Imaizumi, S. Mizuno, Field-assisted oxygen etching for sharp field-emission tip, Surface Science, 602 (2008) 2128-2134.
    [37] J. Onoda, S. Mizuno, H. Ago, STEM observation of tungsten tips sharpened by field-assisted oxygen etching, Surface Science, 604 (2010) 1094-1099.
    [38] J. Onoda, S. Mizuno, Fabrication of <1 1 0> oriented tungsten nano-tips by field-assisted water etching, Applied Surface Science, 257 (2011) 8427-8432.
    [39] J.W. Gadzuk, Many-body tunneling-theory approach to field emission of electrons from solids, Surface Science, 15 (1969) 466-482.
    [40] K. Nagaoka, T. Yamashita, S. Uchiyama, M. Yamada, H. Fujii, C. Oshima, Monochromatic electron emission from the macroscopic quantum state of a superconductor, Nature, 396 (1998) 557-559.
    [41] Y. Uehara, T. Fujita, M. Iwami, S. Ushioda, Single NbO nano-crystal formation on low temperature annealed Nb(0 0 1) surface, Surface Science, 472 (2001) 59-62.
    [42] 蘇冠宇, 場離子顯微鏡研究(1)量測覆銥單原子針場發射與場離子電流(2)鈮(100)表面觀察, 國立台灣師範大學碩士論文, (2011).
    [43] 石智強, 溫度與吸附氣體對鈮針場發射特性的影響, 國立台灣師範大學碩士論文, (2014).
    [44] 游宇豐, 吸附氣體在鈮(100)切面上功函數與場發射電流穩定性的量測, 國立台灣師範大學物理研究所碩士論文, (2015).
    [45] E.W. Müller, T.T. Tsong, Field Ion Microscopy Principles and Applications, American Elsevier Publishing Company
    (1969).
    [46] M.K. Miller, G.D.W. Smith, Atom Probe Microanalysis, Materials Research Society, Pittsburgh,Pennsylvania, (1989).
    [47] T.T. Tsong, Atom-probe field ion microscopy, Cambridge University Press, (1990).
    [48] T.T. Tsong, Atom-Probe Field Ion Microscopy: Field Ion Emission, and Surfaces and Interfaces at Atomic Resolution, Cambridge University Press, (2005).
    [49] E.W. Müller, S. Nakamura, O. Nishikawa, S.B. McLane, Gas‐Surface Interactions and Field‐Ion Microscopy of Nonrefractory Metals, Journal of Applied Physics, 36 (1965) 2496-2503.
    [50] A. Łukaszewski, A. Szczepkowicz, Computer simulation of FIM images – the convex hull model, Vacuum, 54 (1999) 67-71.
    [51] Fowler, R. Howard, L. Nordheim, Electron emission in intense electric fields, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, (1928).
    [52] 丁南宏, 方宏聲, 方振洲, 牛. 寰, 等51人, 真空技術與應用, 國科會精密儀器發展中心, (2001).

    下載圖示
    QR CODE