研究生: |
張翔凱 Chang, Hsiang-Kai |
---|---|
論文名稱: |
理論計算模擬有機立體化學反應路徑與選擇性 Theoretical Calculations of Organic Stereochemistry Reaction Pathway and Selectivity |
指導教授: |
蔡明剛
Tsai, Ming-Kang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | Gaussian 09 、立體化學 、質子化反應 、勢能面掃描 |
英文關鍵詞: | Gaussian 09, stereochemistry, protonation, potential energy surface scan |
DOI URL: | http://doi.org/10.6345/NTNU202000206 |
論文種類: | 學術論文 |
相關次數: | 點閱:243 下載:26 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
理論計算用於預測、尋找立體化學的位向選擇已行之有年,透過計算我們對微觀現象有了更進一步的了解。本篇研究以Gaussian 09為計算軟體,分為兩部分探討立體化學的反應位向,第一部份探討質子化反應(protonation)的立體位向選擇,並以不同的酸性分子:4-nitrophenol、acetic acid以及hydronium ion進行質子化反應,分子結構先以B97XD/6-31G初步優化,再以wB97XD/6-311G(d,p)做二次優化,透過分析電荷分布與過去的文獻中1,找到N-oxide與C3是可能被質子化的反應位向,以勢能面掃描與分子結構探討,說明C3的Si-face為本實驗質子化選擇性的依據,並與前人提出Re-face的選擇性進行結構比較2。最後確認反應步驟中的質子化反應與開環反應並非同步,是先進行質子化後再進行開環反應,且速率決定步驟應為開環反應,完成反應路徑分析。
第二部分探討不同配位基的Rh催化劑所產生立體產物的選擇,以及反應路徑的探討,若配位基為COD(1,5-Cyclooctadiene),則立體產物為外消旋;若配位基為4,7,7-trimethyl-2,5-biphenylbicyclo[2.2.1]hepta-2,5-diene,則立體產物為R form,後者為我們主要的分析對象。從結構與產物的關係來判斷中間物與催化劑的可能催化位向,以B3LYP/6-31G*/SDD進行結構優化,發現可能的催化位向為between與conjugate位,再以這兩個位向進行勢能面掃描,找到between位是較為合理的催化路徑,且從掃描的能障與過渡態分子結構,支持實驗所觀察到的R form選擇性。最後再將配位基換成COD進行between位的催化反應,所得的能障也支持實驗所觀察到的外消旋。
Theoretical calculations have been used to predict and determine the possible orientation of organic and inorganic stereochemistry for a long time. It is especially suitable for investigating the transition state structures and reaction mechanism. This thesis study is an example of using Gaussian 09, a conventional computational chemistry package, to study the stereochemistry of an organic and inorganic reaction.
In the first part, we discuss the orientation of protonation by using different acids, like 4-nitrophenol, acetic acid, and hydronium ion. All structures in this part are initially optimized at the B97XD/6-31G level, and then re-optimization by using wB97XD/6-311G(d,p). Through analyzing the charge and previous literature1, we find out N-oxide and C3 is the most probable direction for protonation. The potential energy surface scanning and molecular structure are discussed, which shows that Si-face of C3 is the direction for protonation selectivity in the experiment, and compares with the early proposed Re-face structure2. Finally, we have shown that the protonation step and the ring-opening step are asynchronous, and the ring-opening step is carried out after protonation. By using frequency analysis, the rate determining step should be a ring-opening reaction.
In the second part, we discuss the selection of stereoisomers generated by Rh catalyst with different ligands. If the ligand is COD(1,5-Cyclooctadiene), the stereo product is racemic. If the ligand is 4,7,7-trimethyl-2,5-biphenylbicyclo[2.2.1]hepta-2,5- diene, the stereo product is R form, which is the main object we discuss. From the structure of intermediate and Rh catalyst, we determine some possible catalytic intermediates. All structures in this part were optimized at B3LYP/6-31G*/ SDD level. And we find out the possible catalytic directions may “between” and “conjugate”. Scanning the potential energy surface with these two directions, we find “between” is a reasonable catalytic path. And from the energy barrier and transition state structure, we support the experimental observation of R form selectivity. Finally, the ligand was replaced by COD to catalyze at the “between” position, the barrier also supports racemic observed in the experiment.
1. S. Gokarneswar, R. Hasibur, M. Ádám, P. Imre, M. Mikko, V. Arto and P. P. M., Angewandte Chemie International Edition, 2012, 51, 13144-13148.
2. S. Dieter, S. Xiaoyu, S. Christof, E. Marc-Olivier, S. W. Bernd and B. A. K., Helvetica Chimica Acta, 2012, 95, 1064-1078.
3. J. Brecher, Pure and Applied Chemistry, 2009, 78, 1897-1970.
4. C. R. S., I. Christopher and P. V., Angewandte Chemie International Edition in English, 1966, 5, 385-415.
5. M. T. Miller, Transactions of the American Ophthalmological Society, 1991, 89, 623-674.
6. K. N. Houk and P. H.-Y. Cheong, Nature, 2008, 455, 309.
7. K. Rudolf, D. C. Spellmeyer and K. N. Houk, The Journal of Organic Chemistry, 1987, 52, 3708-3710.
8. M. Masahiro, M. Yasufumi and I. Yoshihiko, Angewandte Chemie International Edition, 2001, 40, 189-190.
9. C. Agami, J. Levisalles and C. Puchot, Journal of the Chemical Society, Chemical Communications, 1985, DOI: 10.1039/C39850000441, 441-442.
10. S. Bahmanyar and K. N. Houk, Journal of the American Chemical Society, 2001, 123, 12911-12912.
11. U. Gellrich, A. Meißner, A. Steffani, M. Kähny, H.-J. Drexler, D. Heller, D. A. Plattner and B. Breit, Journal of the American Chemical Society, 2014, 136, 1097-1104.
12. G.-J. Cheng, X. Zhang, L. W. Chung, L. Xu and Y.-D. Wu, Journal of the American Chemical Society, 2015, 137, 1706-1725.
13. F. Jo-Hsuan, J. Jia-Hong, C. Hao-Ching, K. Ting-Shen, L. Way-Zen, W. Ping-Yu and W. Hsyueh-Liang, Chemistry – A European Journal, 2017, 23, 1830-1838.
14. A. F. James B. Foresman Exploring chemistry with electronic structure methods, 2 edn., 1996.
15. X. Li and M. J. Frisch, Journal of Chemical Theory and Computation, 2006, 2, 835-839.
16. J. Tomasi, B. Mennucci and R. Cammi, Chemical Reviews, 2005, 105, 2999-3094.
17. G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Journal, 2009.
18. W. J. Hehre, R. Ditchfield and J. A. Pople, The Journal of Chemical Physics, 1972, 56, 2257-2261.
19. R. Ditchfield, W. J. Hehre and J. A. Pople, The Journal of Chemical Physics, 1971, 54, 724-728.
20. A. D. McLean and G. S. Chandler, The Journal of Chemical Physics, 1980, 72, 5639-5648.
21. P. Fuentealba, H. Preuss, H. Stoll and L. Von Szentpály, Chemical Physics Letters, 1982, 89, 418-422.
22. Y. Hayashi, Chemical Science, 2016, 7, 866-880.
23. P.-K. Krystyna, B. Meryem, I. Hayato, S. Dieter and H. Yujiro, Helvetica Chimica Acta, 2011, 94, 719-745.
24. R. Gurubrahamam, Y. m. Chen, W.-Y. Huang, Y.-T. Chan, H.-K. Chang, M.-K. Tsai and K. Chen, Organic Letters, 2016, 18, 3046-3049.
25. P. Tian, H.-Q. Dong and G.-Q. Lin, ACS Catalysis, 2012, 2, 95-119.
26. D. F. Cauble, J. D. Gipson and M. J. Krische, Journal of the American Chemical Society, 2003, 125, 1110-1111.
27. N. Ishida, S. Sawano, Y. Masuda and M. Murakami, Journal of the American Chemical Society, 2012, 134, 17502-17504.