簡易檢索 / 詳目顯示

研究生: 蔡佳容
Chia-Jung Tsai
論文名稱: 奈米金殼層結構與氣體感應機構之研究
The Studies on Shell Structure Related Vapor Sensing Mechanism for Monolayer Protected Gold Nano-Cluster
指導教授: 呂家榮
Lu, Chia-Jung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 89
中文關鍵詞: 奈米金感測器氣體偵測
英文關鍵詞: Gold nanoparticle, sensor, gas detector
論文種類: 學術論文
相關次數: 點閱:197下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中利用五種不同的『單層有機分子膜包覆的奈米金簇(Monolayer Protected Gold Nano-Cluster,MPC)』做為感測材料,將MPC塗佈於阻抗式(Chemiresistor,CR)及質量式(Quartz Crystal Microbalance,QCM)感測器上,對於十種揮發性有機氣體(Volatility Organic Compound,VOC)做偵測,藉以探究奈米金殼層結構與氣體吸附反應機構間的關係;另一方面,對於奈米金粒子作一系列的材料鑑定,分別有UV-Visible spectrum、TEM、SEM、EDS,用以觀察材料之粒徑大小、表面情況,此外利用電化學交流阻抗分析法(electrochemical impedance spectroscopy,EIS),加強奈米金感測材料的純化鑑定。而氣體感測主要分為兩部分探討,首先評估材料AuTBT、AuEBT、AuPEM,它們於阻抗式感測器的靈敏度差,CR/QCM數值0.074 (AuTBT─butylacetate)~1.187(AuPEM─octane),在質量式感測器中靈敏度最高可達11.544(AuTBT─butylacetate),可知材料AuTBT有極好的氣體吸附效果。第二部分中針對AuTBT、AuC8及AuC8mixTBT探討,當AuC8mixTBT(10:1)同時具有AuC8飽和碳鏈伸縮性及AuTBT對於氣體吸附效果,兩種官能基同時存在對於氣體感測靈敏度CR/QCM提升至9.192(butanol)~67.116(octane),置換前後的感測表現為探討重點。

    In this study, we synthesized a series of Monolayer Protected Gold Nano-Cluster (MPC) that were capped by various thiolate functional groups and investigated their vapor sensing mechanisms on chemiresistor (CR) and quartz crystal microbalance (QCM) by detecting 10 volatile organic compounds (VOCs). The thiolate functional groups capped on nano-gold core are 1-octanethiol (C8), 4-tert-butylbenzenethiol (TBT), 4-ethylbenzenethiol (EBT), 2-phenylethanethiol (PET) , and mixed 1-octanethiol and 4-tert-butylbenzenethiol. The completeness of MPC purification by detecting the residual of tetra-n-octylammonium bromide (TOAB) using electrochemical impedance spectrometry were proposed and tested. The discussion of vapor sensing mechanism were divided into two sections. First, material AuEBT, AuPEM, and AuTBT has similar structure and short carbon chain. The sensitivities of MPC coated on QCM are better than those of CR sensors coated with this series of material. The average CR/QCM ratios are ranged from 0.321 for AuTBT to 0.562 for AuPET. AuTBT is an extreme example of high absorption mass with very low resistive changes. Second, material AuTBT, AuC8 and AuC8mixTBT are different in the degree of sorptive quantity and interparticle shell overlaps. That causes material AuC8mixTBT has the most superior sensitivity performance in CR. The CR/QCM amplification factors are range from 9.192 for butanol to 67.116 for octane. The correlation between the response sensitivity and the interparticle structure properties revealed not only a clear dependence of the sensitivity on ligand overlap but also the occurrence of a change of the competitive effect in permittivity and interparticle relaxation. The findings in this research reflects that interparticle flexibility and sorptive quantity of MPCs have a profound impact on the response characteristics of such sensing materials on different platform.

    中文摘要 i 英文摘要 ii 目錄 iii 圖目錄 vi 表目錄 ix 第一章 緒論 1-1前言 1 1-2研究動機 2 1-3奈米科技之發展 4 1-3-1奈米材料基本理論 5 1-3-2奈米元件的製造方法 7 1-4奈米金感測材料的製備 1-4-1兩相合成法的介紹 10 1-4-2表面置換法的介紹 11 1-5化學感測器 13 1-5-1阻抗式化學感測器 14 1-5-2石英微量天秤 15 1-6 MPC應用於氣體感測之發展治革 16 第二章 實驗部分 2-1實驗藥品材料與儀器設備 2-1-1實驗藥品 20 2-1-2儀器設備 22 2-2 實驗流程圖 26 2-3奈米金粒子純化鑑定 2-3-1 AC Impedance 27 2-3-2 FE-SEM&EDS 27 2-4奈米金粒子合成方法 28 2-5微小指狀電極表面矽烷化 32 2-6基本電阻量測與噴鍍控制 32 2-7氣體生成量測系統說明 34 2-7-1資料擷取系統部份 34 2-7-2有機氣體的感測 37 第三章 實驗結果與討論 3-1奈米金感測材料合成與鑑定 38 3-1-1界面活性劑純化探討 38 3-1-2奈米金粒子光譜與表面型態、粒徑分析 43 3-2 鍍膜控制 47 3-3生成系統─有機氣體濃度校正 50 3-4五種MPC感測器對於有機氣體感測訊號探討 3-4-1有機氣體感測訊號 54 3-4-2數據處理 58 3-4-3氣體感測器之選擇性及靈敏度分析 3-4-3-1感測之各類揮發性有機氣體物性表 60 3-4-3-2 AuTBT、AuEBT、AuPEM感測器比較 61 3-4-3-3不同比例AuC8mixTBT氣體感測趨勢比較 64 3-4-3-4 AuC8、AuTBT、AuC8mixTBT感測器比較 67 3-4-4 MPC薄膜結構對於氣體感測現象之理論預測 73 第四章 結論 77 第五章 參考文獻 79 補充資料 83

    1. Modi A., Koratkar N., Lass E. Nature, 2003, 424, 171.
    2. Lin H. B., Shih J. S. Sen. Actuators. B, 2003, 92, 243.
    3. Shih J. S., Chao Y. C., Sung M. F. Sen. Actuators, 2001, 76, 347.
    4. Panchapakesan B., DeVoe D. L., Widmaier M. R., Cavicchi R., Semancik S. Nanotechnology, 2001, 12, 336.
    5. Taurino A. M., Epifani M., Toccoli T., Iannotta S., Siciliano P. Thin Solid Film, 2003, 436, 52.
    6. (a) Vlasov Y. G., Tarantov Y. A., Bobrov P. V. Anal. Bioanal. Chem. 2003, 376, 788. (b) Wolfbeis O. S. Anal. Chem. 2002, 74, 2663.
    7. 尹邦耀,奈米時代,五南圖書出版,2005.
    8. 蕭義鴻,以電化學方法製備鐵奈米粒子之研究,國立中山大學電機工程研究所碩士論文,2004.
    9. 黃俊傑,金奈米形狀合成及形狀控制,國立台灣大學化學研究所碩士論文,2001.
    10. Xia Y., Whitesides G. M. Angew. Chem. Int. Ed. 1998, 37, 550.
    11. Sheats J. R., Smith B. W. Microlithography: Science and Technology, Marcel Dekker, NY, 1998.
    12. Riegler J. E., LeGrange J. D. Phys. Rev. Lett. 1988, 61, 2492.
    13. Patai S., Rappoport Z. The Chemistry of Organic Derivatives of Gold and Silver, John Wiley & Sons, NY, 1999.
    14. Nuzzo R. G., Allara D. L. J. Am. Chem. Soc. 1983, 105, 4481.
    15. Atre S. V., Liedberg B., Allara D. L. Langmuir 1995, 11, 3882.
    16. Harrell W., Abraham S., Yitzhak S., James E. E. J. Am. Chem. Soc. 1993, 115, 9389.
    17. Evans S. D., Johnson S. R., Cheng Y. L., Shen T. J. Mater. Chem. 2000 , 10 ,183.
    18. John F., Kiely C. J., Bethell D., Schiffrin D. J. Chem. Mater. 1998, 10, 922.
    19. Hostetler M. J., Templeton A. C., Murray R. W. Langmuir, 1999, 15, 3782.
    20. Daniel M. C., Astruc D. Chem. Rev., 2004, 104, 293.
    21. Kim Y. J., Yang Y. S., Ha S. C., Cho S. M., Kim Y. S., Kim H. Y., Yang H., Kim Y. T. Sensors and Actuators B 2005,106,189.
    22. Stetter J. R., Penrose W. R., Sheng Y. J. Electroanal. Chem. Soc. 2003, 150, S11.
    23. Wuelfing W. P., Green S. J., Pietron J. J., Cliffel D.E., Murray R. W. J. Am. Chem. Soc. 2000, 122, 11465.
    24. Sauerbrey G. Z. Phys. 1959, 155, 206
    25. Wohltjen H., Snow A. W. Anal. Chem. 1998, 70, 2856
    26. Han L., Daniel D. R., Maye M. M., Zhong C. J. Anal. Chem.2001, 73, 4441.
    27. Zamborini F. P., Leopold M. C., Hicks J. F., Kulesza P. J., Malik M. A., Royce W. M. J. Am. Chem. Soc. 2002, 124, 8958.
    28. Krasteva N., Guse B., Besnard I., Yasuda A., Vossmeyer T. Sens. Actuators B 2003, 92, 137.
    29. Lu C. J., Steinecker W. H., Tian W.C., Oborny M. C., Nichols J. M., Agah M., Potkay J. A., Chan H. K. L., Driscoll J., Sacks R. D., Wise K. D., Pangad S. W., Zellers E. T. Lab on Chip, 2005, 5, 1123.
    30. Han L., Shi X., Wu W., Kirk F. L., Luo J., Wang L., Mott D., Cousineau L., I-I S., Lu S., Zhong C. J. Sens. Actuators B 2005, 106,431.
    31. Shi X., Wang L., Kariuki N., Luo J., Zhong C. J., Lu S. Sens. Actuators B 2006, 117, 65.
    32. Joseph Y., Peic A., Chen X., Michl J., Vossmeyer T., Yasuda A. J. Phy. Chem. C 2007,111, 12855.
    33. Joseph Y., Guse B., Vossmeyer T., Yasuda A. J. Phy. Chem. C 2008, 112, 12075.
    34. Wang L., Shi X., Kariuki N. N., Schadt M., Wang G. R., Rendeng Q., Choi J., Luo J., Lu S., Zhong C. J. J. Am. Chem. Soc. 2007, 129, 2161.
    35. Raguse B., Chow E., Barton C. S., Wieczorek L. Anal. Chem. 2007, 79, 7333.
    36. Raguse B., Barton C. S., Muller K. H., Chow E., Wieczorek L. J. Phy. Chem. C 2009, 113, 15390.
    37. Joseph Y., Guse B., Nelles G. Chem. Mater. 2009, 21, 1670.
    38. CRC Handbook of Chemistry and Physics, 86TH
    39. Abraham M. H. Chem. Soc. Rev. 1993, 22, 73.
    40. Cai Q. Y., Zellers E. T. Anal. Chem. 2002, 74,3533.
    41. Grate J. W., Nelson D. A., Skaggs R. Anal. Chem. 2003, 75, 1868.
    42. Zamborini F. P., Smart L. E., Leopold M. C., Murray R.W. Anal. Chim. Acta 2003, 496, 3.
    43. Cai Q. Y., Zellers E. T. Anal. Chem. 2002, 74, 3533.
    44. Bard A. J., Faulkner L. R., Electrochemical Methods, John Wiley & Sons, Inc., Hoboken, NJ., 2001
    45. 李季霖, 民國95年7月, “奈米金氣體感測材料之線性溶合能量關係模式與圖形辨識之研究”, 輔仁大學化學研究所碩士論文
    46. 簡日昇, 民國96年7月, “奈米金-阻抗式氣體感測器應用於微機電氣相層析偵測器之研製”, 輔仁大學化學研究所碩士論文
    47. 黃瑞萱, 民國96年7月, “奈米金簇表面分子膜化學結構與氣體感測行為模式之研究”, 輔仁大學化學研究所碩士論文

    下載圖示
    QR CODE